Revista de la Facultad de Ciencias
Agrarias. Universidad Nacional de Cuyo. Tomo 56(1). ISSN (en línea) 1853-8665.
Año 2024.
Original article
Application
stages and doses of tembotrione herbicide in grain sorghum (Sorghum bicolor)
crop
Etapas
de aplicación y dosis del herbicida tembotrione en el cultivo del sorgo
granífero (Sorghum bicolor)
Weverton
Ferreira Santos1,
Sérgio de
Oliveira Procópio3,
Guilherme Braga
Pereira Braz2,
Rafael Lopes
Santos Rodrigues2,
Adriano
Jakelaitis1
1Instituto
Federal Goiano. Programa de Pós-graduação em Ciências Agrárias - Agronomia.
Rodovia Sul Goiana. km 01. Zona Rural. Rio Verde. Goiás. Brasil. CEP:
75901-970.
2Universidade
de Rio Verde. Programa de Pós-graduação em Produção Vegetal. Fazenda Fontes do
Saber. Campus Universitário. Caixa Postal 104, Rio Verde. Goiás. Brasil. CEP:
75901-970.
3EMBRAPA
Meio Ambiente. Jaguariúna. São Paulo. Brasil.
Abstract
The herbicide
tembotrione is effective against grassy weeds constituting an important tool in
sorghum crops. However, in Brazil, this herbicide is only registered for corn.
This study aimed to evaluate the selectiveness of tembotrione combined with
atrazine at different doses and developmental stages of grain sorghum. Two
experiments were conducted in Rio Verde and Montividiu, state of Goiás, Brazil,
in 2018. A randomized block design with four replications, in a 3x2+1+1
factorial arrangement, tested three developmental stages (V3, V5
and V7), two doses of tembotrione (37.8 and 75.6 g ha-1)
combined with the herbicide atrazine (1,000 g ha-1), an additional
treatment only with atrazine at V3 and a control, free of herbicide.
Evident phytotoxicity was observed with the combination of tembotrione and
atrazine at V3 and V5 stages. Symptoms included
reductions in plant height, sorghum stem diameter, panicle length, and
cumulative dry mass of sorghum plant shoots. However, there was no influence on
thousand grains mass, regardless of application stages. Tembotrione at 37.8 g
ha-1 combined with atrazine at 1,000 g ha-1 was selective
for grain sorghum when applied at V7, without affecting grain yield.
Keywords: atrazine, weeds,
post-emergence, yield, Sorghum bicolor
Resumen
El herbicida
tembotrione tiene un buen control de malezas y puede ser una herramienta
importante en el cultivo del sorgo. Sin embargo, este herbicida está registrado
en Brasil solo para maíz. Este estudio tuvo como objetivo evaluar la
selectividad de la tembotrione asociada a la atrazine en diferentes dosis y
etapas de desarrollo del grano de sorgo. Se realizaron dos experimentos en Rio
Verde-GO y Montividiu-GO, Brasil en 2018. Se adoptó un diseño de bloques al
azar con cuatro repeticiones, en un factorial 3x2+1+1, con tres etapas de
desarrollo (V3, V5 y V7), dos dosis de
tembotrione (37,8 y 75,6 g ha-1) asociada al herbicida atrazine
(1,000 g ha-1), un tratamiento adicional con solo atrazine en V3
más un testigo sin herbicida. Los resultados permitieron observar síntomas
visibles de fitotoxicidad cuando se aplicó la asociación entre los herbicidas
tembotrione y atrazine en la etapa V3 y V5. Los síntomas
incluyeron reducciones en la altura de la planta y el diámetro del tallo del
sorgo y reducciones en la longitud de la panícula con la aplicación en la etapa
V5. La aplicación de tembotrione en asociación con atrazine en V3
y V5 resultó en una reducción de la acumulación de masa seca en la
parte aérea de las plantas de sorgo, pero sin influencia en la masa de mil
granos, independientemente de la etapa de aplicación. El herbicida tembotrione
en dosis de 37,8 g ha-1 en asociación con atrazine en dosis de 1,000
g ha-1 fue selectivo para sorgo en grano cuando se aplicó en V7,
sin causar reducción en el rendimiento de grano.
Palabras clave: atrazine,
malezas, postemergencia, productividad, Sorghum bicolor
Originales:
Recepción: 03/04/2023 - Aceptación: 15/03/2024
Introduction
Under water
scarcity and considering food security, sorghum has become an increasingly
strategic crop for both animal and human feed (9, 22, 24). In addition,
sorghum has a significantly lower production cost than corn (10). Due to these
factors, sorghum constitutes an option for second-crop cultivation, mainly in
succession to soybean (15, 24).
Like sweet corn,
sorghum greater sensitivity to herbicides constitutes one key factor limiting
crop expansion (7, 20), especially
considering herbicides effective against narrow-leaved weeds (grasses) (21). Evidence of
this higher sensitivity refers to sorghum as an indicator plant for herbicide
presence in soils (19) and substrates
(6). This becomes more evident when
analyzing the low number of herbicides registered for sorghum pre or
postemergence in Brazil: 2,4-D, atrazine, S-metolachlor, imazethapyr, and
imazapic. For imidazolinone herbicides, registers only include tolerant hybrids
(17). In Brazil, no selective post-emergence
product against weeds can ensure sorghum crops.
Tembotrione is
registered in Brazil for post-emergence applications in corn (17). This
herbicide is a triketone that inhibits the enzyme 4-hydroxyphenylpyruvate
dioxygenase (HPPD), essential for carotenoid synthesis, causing leaf
discoloration, necrosis, and plant death (12, 26). This highly
selective herbicide for corn (11, 28) could be
evaluated for sorghum, a taxonomically related species (Poaceae).
Studies on
post-emergence herbicide selectivity should consider adequate dosages and application
stages. According to Negrisoli et al. (2004), selectivity
cannot solely be determined by isolated assessments of visual intoxication
symptoms. These authors state that several herbicides reduce crop yield without
causing visual injuries.
Complementing
tembotrione with atrazine seeks sorghum selective improvement in weed control (8). In this
sense, this research hypothesized that selectivity of the herbicide tembotrione
in association with atrazine may vary depending on sorghum phenological stage
and dose. The objective was to evaluate herbicide selectivity of tembotrione
combined with atrazine, at post-emergence of sorghum in different doses and
developmental stages.
Material
and methods
Two field
experiments were conducted in the southwest region of the state of Goiás, an
important sorghum-producing region in Brasil, in the municipalities of Rio
Verde (17°52’55” S; 50°55’43” W, 740 m altitude) and Montividiu (17°22’58” S;
51°22’40” W, 905 m altitude). The experiments were installed in the second crop
after soybean in a no-till system, from March to July 2018.
Soils were
classified as Latossolo Vermelho-Amarelo Distrófico and Latossolo
Vermelho distrófico in Montividiu and Rio Verde, respectively (23). Soil analysis
was performed for chemical and physical characterization at the 0.0 - 0.20 m
layer. Results for Rio Verde were: pH in CaCl2: 5.9; Ca, Mg, K, Al,
H+Al: 4.2; 1.3; 0.2; 0.1; 4.3 in cmolc dm-3,
respectively; P: 3.8 mg dm-3; Organic matter (OM): 277 g dm-3;
clay, silt, and sand: 393; 125 and 482 in g kg-1, respectively. In
Montividiu results were: pH in CaCl2: 5.6; Ca, Mg, K, Al, H+Al: 3.3;
0.9; 0.4, 0.05; 4.5 in cmolc dm-3, respectively; P: 37.6
mg dm-3; OM: 226 g dm-3; clay, silt, and sand: 249; 68
and 683 in g kg-1, respectively.
According to the
Köppen classification, the climate is tropical (Aw), with dry winter and
rainfall concentrated in summer (2). Annual
rainfall and temperature averages in Rio Verde and Montividiu are, 1,493 mm and
23.4°C and 1,512 mm and 23.0°C, respectively (3). Figure
1
shows meteorological data recorded during the experiments.
Source/Fuente: INMET - Instituto Nacional de
Meteorologia. Collection station: Rio Verde (Goiás State).
Figure 1. Rainfall
(mm), relative humidity (%) and average temperature (°C) in Rio Verde and
Montividiu (Brazil), 2018 second crop.
Figura 1. Datos
de precipitación (mm), humedad relativa del aire (%) y temperatura media (°C)
durante los experimentos realizados en Rio Verde y Montividiu (Brasil), 2018
fuera de temporada.
The experiments
were conducted in a randomized block design with four replications, in a
3x2+1+1 factorial arrangement, with three developmental stages (V3,
V5 and V7; with three, five and seven fully developed leaves,
respectively), two doses of the herbicide tembotrione (37.8 and 75.6 g ha-1)
combined with the herbicide atrazine (1,000 g ha-1), an additional
treatment with only atrazine applied at V3 stage and a
herbicide-free control. Experimental units consisted of four 6.0 m long rows
spaced 0.5 m, constituting a total area of 12.0 m2 and a useful area
of 5.0 m2, with two central rows, ignoring the last 0.5 m.
In both
locations, the grain sorghum hybrid BRS 330 (simple, early hybrid with red
grains and no tannin) was used. This genotype is widely cultivated in the
Southwest region of Goiás State. Mechanical sowing at 3 cm depth was carried
out in March, with 200,000 plants per hectare. According to the regional
cultivation system, no fertilization was carried out after the preceding
soybean crop.
Herbicides were
applied using a CO2-pressurized backpack sprayer equipped with a bar
with four double-fan nozzles, 110.02, with air induction, spaced 0.5 m apart.
The working pressure was 2 kgf cm-2, resulting in a spray volume of
150 L ha-1. Mixture preparation included herbicide and an adjuvant
based on soybean oil methyl ester at 0.1% v v-1. Climate data during
application (development stages V3, V5 and V7,
respectively) in Rio Verde were: temperature: 23.0; 23.8 and 28.3°C, relative
humidity: 65; 56 and 53% and wind speed: 2.8; 2.4 and 2.5 m s-2 at
V3, V5 and V7, respectively. In Montividiu, the recorded data were temperature:
27.0; 28.8 and 29.6°C, relative humidity: 55; 59 and 39% and wind speed: 3.2;
1.2 and 2.1 m s-2. Regardless of herbicide action, all plots were
hand-weeded, leaving sorghum plants exposed to herbicide treatments. No pest or
disease control was necessary.
Responses of
sorghum plants to herbicide application, i.e. phytotoxicity, were
visually evaluated at 2, 7, 14 and 28 days after application (DAA). According
to the SBCPD scale (27), percentage
scores were assigned where zero is symptoms absence and 100 is plant death. At
harvest, five plants randomly chosen were evaluated for plant height (from neck
to the upper end of the panicle); panicle length (between base and panicle
tip); stem diameter (using a digital caliper, at the first node above the
ground); and shoot dry mass (weighing oven-dried shoots, after forced air
circulation at 65°C). In addition, evaluations were carried out for grain yield
(harvesting and threshing panicles, with subsequent cleaning and weighing of
grains) and thousand-grain mass, evaluated according to the Rules for Seed
Analysis (1). For both
variables, moisture was corrected to 13%.
Data were tested
by ANOVA at 5% significance. Initially, phytotoxicity data were transformed by
the expression (√x+1), for homoscedasticity and normality followed by Tukey
test (p≤0.05) and Dunnet test (p≤0.05) for means comparison. Statistical
tests were run using the Assistant statistical software (25).
Results
and discussion
Treatments
containing tembotrione and atrazine caused phytotoxicity symptoms in grain
sorghum plants in both locations (table 1 and table
2).
Table 1.
Visual phytotoxicity after application of tembotrione and atrazine herbicides
at different doses and developmental stages of grain sorghum. Rio Verde
(Brazil), 2018.
Tabla 1. Fitotoxicidad
visual después de la aplicación de los herbicidas tembotriona y atrazina en
diferentes dosis y estados de desarrollo de sorgo en grano. Rio Verde (Brasil),
2018.

DAA: days after application. Means followed by
different uppercases, in the same row, and lowercases, in the same column, are
significantly different by Tukey’s test (p≤0.05). * Significant
difference from the control by Dunnett test (p≤0.05).
DAA: días después aplicación. Medias seguidas de
diferentes letras mayúsculas, en la misma fila, y minúsculas, en la misma
columna, son significativamente diferentes mediante prueba de Tukey (p≤0,05). *
Diferencia significativa respecto al control mediante prueta de Dunnett
(p≤0,05).
Table
2. Visual phytotoxicity after application
of tembotrione and atrazine herbicides at different doses and developmental
stages of grain sorghum. Montividiu (Brazil), 2018.
Tabla 2. Fitotoxicidad
visual después de la aplicación de los herbicidas tembotriona y atrazina en
diferentes dosis y estados de desarrollo de sorgo en grano. Montividiu
(Brasil), 2018.

DAA: days after application. Means followed by
different uppercases, in the same row, and lowercases, in the same column, are
significantly different by Tukey’s test (p≤0.05). * Significant
difference from the control by Dunnett test (p≤0.05).
DAA: días después aplicación. Medias seguidas de
diferentes letras mayúsculas, en la misma fila, y minúsculas, en la misma
columna, son significativamente diferentes mediante prueba de Tukey (p≤0,05). *
Diferencia significativa respecto al control mediante prueta de Dunnett
(p≤0,05).
Observed
symptoms included leaf discoloration (whitening), with a slightly reddish tint,
and in most severe cases, necrosis, in accordance with Karam
et al. (2009).
At 2, 7 and 14 DAA and in both locations, the use of 75.6 g ha-1
tembotrione + atrazine, caused stronger effects compared to the lowest dose
(37.8 g ha-1) of tembotrione, also combined with atrazine.
Furthermore, later applications (V7 stage) resulted in lower
phytotoxicity comparing V3 and V5 applications (table
1
and table
2).
At 28 DAA, the
highest dose of tembotrione (75.6 g ha-1) still showed the highest
phytotoxicity (table 1 and table 2). However, a
tendency towards recovery of sorghum plants was observed mainly in Rio Verde,
compared to the previous evaluation at 14 DAA (table 1). In this
evaluation, applications at V3 caused greater phytotoxicity in
sorghum than those at V5 and V7. Therefore, early
applications of the combination of tembotrione and atrazine cause greater
toxicity to sorghum plants, in accordance with Dan et al. (2010b), who reported
that sorghum plants receiving tembotrione at three-leaf stage showed higher
phytotoxicity than at five-leaf stage. This leads to the conclusion that, at
more advanced stages, sorghum better tolerates tembotrione.
Atrazine alone
(1,000 g ha-1 at V3) did not cause any phytotoxicity in
sorghum plants (table 1 and table 2), demonstrating
its high selectivity when used at the said dose. Takano et al.
(2018)
found high selectivity even at higher doses (2,000 g ha-1) when
applied to grain sorghum plants with three to four leaves.
Increasing the
dose of tembotrione from 37.8 to 75.6 g ha-1- in combination with
atrazine did not reduce plant height, regardless of the experimental location (table
3).
Table
3. Plant height and stem diameter after
application of tembotrione and atrazine at different doses and developmental
stages of grain sorghum. Rio Verde and Montividiu (Brazil), 2018.
Tabla 3. Altura
de planta y diámetro de tallo después de la aplicación de tembotriona y
atrazina en diferentes dosis y estados de desarrollo de sorgo en grano. Rio
Verde y Montividiu (Brasil), 2018.

Means followed by different uppercases, in the same
row, and lowercases, in the same column, are significantly different by Tukey’s
test (p≤0.05). * Significant difference from the control by Dunnett
test (p≤0.05).
Medias seguidas de diferentes letras mayúsculas, en
la misma fila, y minúsculas, en la misma columna, son significativamente
diferentes mediante prueba de Tukey (p≤0,05). * Diferencia
significativa respecto al control mediante prueta de Dunnett (p≤0,05).
Applications of
tembotrione and atrazine herbicides at V3 and V5, in Rio
Verde, induced lower growth rates, yielding smaller plants compared to the
application at V7. In Montividiu, V3 application resulted
in the highest occurrence of smaller plants. In agreement with Dan
et al. (2010b),
who concluded that tembotrione reduced growth when applied at V3
stage.
In Rio Verde,
only the treatment tembotrione + atrazine (75.6 + 1,000 g ha-1)
applied at V3 reduced stem diameter of sorghum plants compared to
the control without application and the treatment containing only atrazine
(1,000 g ha-1) (table 3). This was also observed in Montividiu,
independently of the dose of tembotrione and atrazine applied at V3.
The reduction in stem diameter may cause lodging and consequent losses during
mechanized harvesting.
In contrast,
applications of tembotrione combined with atrazine at V5 or V7
did not change stem diameter (table 3). In popcorn,
regardless of stage (V2, V4 or V6), Maia
et al. (2019)
detected no differences in stem diameter after application of tembotrione +
atrazine (76 + 2,000 g ha-1).
Tembotrione
affected panicle development in grain sorghum plants. In Rio Verde, tembotrione
+ atrazine (37.8 + 1,000 g ha-1) applied at V5, and
tembotrione + atrazine (75.6 + 1,000 g ha-1) at V3 and V5
reduced panicle length compared to atrazine alone (1,000 g ha-1) and
the control without herbicide (table 4).
Table
4. Panicle length and shoot dry mass after
application of tembotrione and atrazine at different doses and developmental
stages of grain sorghum. Rio Verde and Montividiu (Brazil), 2018.
Tabla 4. Longitud
de panícula y masa seca de brotes después de la aplicación de tembotriona y
atrazina en diferentes dosis y estados de desarrollo de sorgo en grano. Rio
Verde y Montividiu (Brasil), 2018.

Means followed by different uppercases, in the same
row, and lowercases, in the same column, are significantly different by Tukey’s
test (p≤0.05). * Significant difference from the control by Dunnett
test (p≤0.05).
Medias seguidas de diferentes letras mayúsculas, en
la misma fila, y minúsculas, en la misma columna, son significativamente
diferentes mediante prueba de Tukey (p≤0,05). * Diferencia
significativa respecto al control mediante prueta de Dunnett (p≤0,05).
In Montividiu,
this was observed only when sorghum plants were subjected to the combination of
tembotrione + atrazine (75.6 + 1,000 g ha-1) at the V5,
demonstrating that applications with these two herbicides at V5 are
not recommended.
Negative effects
of tembotrione and atrazine herbicides at V3 and V5
include significant reductions in shoot dry mass in both locations (table
4).
However, effects observed at V3 were stronger than at V5.
On the other hand, applications of this mixture of herbicides at V7
did not influence shoot dry mass. Thus, applications at more advanced stages
result safer for sorghum plants. Dan et al. (2010a) found that
tembotrione doses equal to or less than 118 g ha-1 applied to millet
plants with seven leaves reduced shoot dry mass by less than 10%. Even focusing
on grain yield, dry mass production is important for straw mulch, and the
consequent no-till sustainability. Due to biomass production, the crop becomes
an excellent option for crop rotation systems (16).
No dose of
tembotrione (37.8 and 75.6 g ha-1) + atrazine (1,000 g ha-1),
nor application stage (V3, V5 and V7) affected
the thousand-grain mass in either location (table 5).
Table
5. Thousand-grain mass and grain yield
after application of tembotrione and atrazine at different doses and
developmental stages of grain sorghum. Rio Verde and Montividiu (Brazil), 2018.
Tabla 5. Masa
de mil granos y rendimiento de grano después de la aplicación de tembotriona y
atrazina en diferentes dosis y estados de desarrollo de sorgo granífero. Rio
Verde y Montividiu (Brasil), 2018.

Means followed by different uppercases, in the same
row, and lowercases, in the same column, are significantly different by Tukey’s
test (p≤0.05). * Significant difference from the control by Dunnett
test (p≤0.05).
Medias seguidas de diferentes letras mayúsculas, en
la misma fila, y minúsculas, en la misma columna, son significativamente
diferentes mediante prueba de Tukey (p≤0,05). * Diferencia
significativa respecto al control mediante prueta de Dunnett (p≤0,05).
This yield
component was hardly influenced by herbicides. Similarly, in corn, tembotrione
at 100.8 g ha-1 at V2, V4, V7 and V10,
did not affect thousand-grain mass (14). In both
locations, sorghum grain yield was significantly reduced with the application
of tembotrione at V3 or V5, either at 37.8 or 75.6 g ha-1
combined with atrazine (table 5). On the other hand,
applications of these herbicides at V7 did not reduce grain yield, except for
the treatment tembotrione at 75.6 + atrazine 1,000 g ha-1, in Rio
Verde. In this case, yield reduction was approximately 234 kg ha-1.
Tembotrione
selectivity is related to the cytochrome P-450 complex, majorly responsible for
the metabolism of HPPD-inhibiting herbicides in species tolerant to active
ingredients. In this study, sorghum grain yields indicated that tembotrione at
37.8 g ha-1, in combination with atrazine at V7, was
selective when applied in the second crop in Southwestern Goiás. The
application of atrazine alone at V3 did not reduce grain yield
compared to the control without herbicide (table 5). Previous
research states that post-emergence application of 2,000 g ha-1
atrazine is selective for sorghum, without affecting grain yield (21). Given
reductions in grain yield after tembotrione doses over 75.6 g ha-1
combined with atrazine regardless of stage, using these herbicides becomes
unfeasible. After lower reductions in yield when applying tembotrione to the
most developed sorghum plants (five and seven developed leaves) (6), lower doses
should be considered.
These
evaluations should always be done in combination with atrazine, due to greater
efficiency in weed control, even when used with higher doses (8). As grain
sorghum is planted soon after soybean harvest, and grain losses are inevitable,
atrazine becomes a fundamental herbicide for the control of volunteer plants of
the legume when applied post-emergence (4).
Conclusions
Phytotoxicity
symptoms are more noticeable in grain sorghum plants when combinations of tembotrione
and atrazine are applied at V3 stage.
Reductions in
plant height and stem diameter of grain sorghum plants are observed when
tembotrione (37.8 and 75.6 g ha-1) and atrazine (1,000 g ha-1)
are applied in combination at V3 stage, while panicle reduction is
evidenced when applications are at V5. Application of tembotrione
(37.8 and 75.6 g ha-1) and atrazine (1,000 g ha-1) at V3
and V5 leads to a reduction in cumulative shoot dry mass of grain
sorghum plants; with no effects on thousand-grain mass, regardless of
application stage.
Tembotrione at
37.8 g ha-1 with atrazine at 1,000 g ha-1 is selective
for grain sorghum (hybrid BRS 330) when applied at the V7 stage, not
reducing grain yield.
Acknowledgments
Thanks to
Federal Institute of Science and Technology (IFGoiano - Campus Rio Verde) and
University of Rio Verde (UniRV) for funding and support to this research.
1. Brasil.
Ministério da Agricultura, Pecuária e Abastecimento. 2009. Regras para análise
de sementes. Brasília: Mapa/ACS. 399 p.
2. Cardoso, M.
R. D.; Marcuzzo, F. F. N.; Barros, J. R. 2015. Classificação climática de
Köppen-Geiger para o Estado de Goiás e o Distrito Federal. Acta Geográfica. 8:
40-55. DOI: https://doi.org/10.18227/2177-4307.acta.v8i16.1384
3. Climate-date.
2022. Dados climáticos para cidades mundiais. https://pt.climatedata.org/
(Access: 27/10/2022).
4. Dan, H. A.;
Barroso, A. L. L.; Procópio, S. O.; Dan, L. G. M.; Oliveira Neto, A. M.;
Guerra, N.; Braz, G. B. P. 2009. Controle químico de plantas voluntárias de
soja Roundup Read®. Revista Brasileira de Herbicidas. 8: 96-101. DOI:
https://doi.org/10.7824/rbh.v8i3.72
5. Dan, H. A.;
Barroso, A. L. L.; Dan, L. G. M.; Oliveira Jr., R. S; Procópio, S. O.; Freitas,
A. C. R.; Correa, F. M. 2010a. Seletividade do herbicida tembotrione à cultura
do milheto. Planta Daninha. 28: 793-799. DOI:
https://doi.org/10.1590/S0100-83582010000400012
6. Dan, H. A.;
Barroso, A. L. L.; Dan, L. G. M.; Procópio, S. O.; Ferreira Filho, W. C;
Menezes, C. C. E. 2010b. Tolerância do sorgo granífero ao herbicida
tembotrione. Planta Daninha. 28: 615-620. DOI:
https://doi.org/10.1590/S0100-83582010000300019
7. Dan, H. A;
Dan, L. G. M.; Barroso, A. L. L.; Oliveira Jr., R. S.; Guerra, N.; Feldkircher,
C. 2010c. Tolerância do sorgo granífero ao 2,4-D aplicado em pós-emergência.
28: 785-792. DOI: https://doi.org/10.1590/S0100-83582010000400011
8. Dourado Neto,
D.; Martin, T. N.; Cunha, V. S.; Stecca, J. D. L.; Nunes, N. V. 2013. Controle
de plantas daninhas no milho com o herbicida tembotrione. Enciclopédia
Biosfera. 9: 808-817.
9. Elias, O. F.
A. S.; Leite, M. L. M. V.; Azevedo, J. M.; Silva, J. P. S. S.; Nascimento, G.
F.; Simplício, J. B. 2016. Características agronômicas de cultivares de sorgo
em sistema de plantio direto no semiárido de Pernambuco. Ciência Agrícola. 14:
29-36. DOI: https://doi.org/10.28998/rca.v14i1.2318
10. Fialho, E.
T.; Lima, J. A. F.; Oliveira, V.; Silva, H. O. 2002. Substituição do milho pelo
sorgo sem tanino em rações de leitões: digestibilidade dos nutrientes e
desempenho animal. Revista Brasileira de Milho e Sorgo. 1: 105-111.
11. Giraldeli,
A. L.; Silva, G. S.; Silva, A. F. M.; Ghirardello, G. A.; Marco, L. R.;
Victoria Filho, R. 2019. Efficacy and selectivity of alternative herbicides to
glyphosate on maize. Revista Ceres. 66: 279-286. DOI:
https://doi.org/10.1590/0034-737X201966040006
12. Karam, D.;
Silva, J. A. A.; Pereira Filho, I. A.; Magalhaes, P. C. 2009. Características
do herbicida tembotrione na cultura do milho. Sete Lagoas: Embrapa Milho e
Sorgo. 6 p.
13. Maia, T. M.;
Braz, G. B. P.; Machado, F. G.; Silva, A. G.; Andrade, C. L. L.; Simon, G. A.
2019. Associações herbicidas aplicadas na cultura do milho pipoca em diferentes
estádios de desenvolvimento. Revista Brasileira de Milho e Sorgo. 18: 350-363.
14. Mançanares,
L. B.; Gonçalves Netto, A.; Andrade, J. F.; Presoto, J. C.; Silva, L. J. F.;
Carvalho, S. J. P. 2018. Seletividade de tembotrione aplicado em diferentes
estádios fenológicos da cultura do milho safrinha. Revista Agrogeoambiental.
10: 65-73. DOI: 10.18406/2316-1817v10n420181167
15. Martins, L.
S.; Menezes, C. B.; Simon, G. A.; Silva, A. G.; Tardin, F. D.; Gonçalves, F. H.
2016. Adaptabilidade e estabilidade de híbridos de sorgo granífero no sudoeste
de Goiás. Agrarian. 9: 334-347.
16. Menezes, L. A.
S.; Leandro, W. M.; Oliveira Júnior, J. P.; Ferreira, A. C. B.; Santana, J. G.;
Barros, R. G. 2009. Produção de fitomassa de diferentes espécies, isoladas e
consorciadas, com potencial de utilização para cobertura do solo. Bioscience
Journal. 25: 7-12.
17. Ministério
da Agricultura Pecuária e Abastecimento - Mapa. 2021. AGROFIT - Sistema de Agrotóxicos
Fitossanitários.
http://agrofit.agricultura.gov.br/agrofit_cons/principal_agrofit_cons. Access:
25/03/2021.
18. Negrisoli,
E.; Velini, E. D.; Tofoli, G. R.; Cavenaghi, A. L.; Martins, D.; Morelli, J.
L.; Costa, A. G. F. 2004. Seletividade de herbicidas aplicados em
pré-emergência na cultura de cana-de-açúcar tratada com nematicidas. Planta
Daninha. 22:567-575. DOI: https://doi.org/10.1590/S0100-83582004000400011
19. Oliveira, T.
L.; Senoski, M. P.; Pereira Assis, A. C. L. P.; Miranda, V. P.; Melo, C. A. D.;
Reis, M. R. 2018. Seleção de espécies bioindicadoras do herbicida
ethoxysulfuron. Revista de Ciências Agrárias. 61: 1-8.
20. Pataky, J.
K.; Meyer, M. D.; Bollman, J. D.; Boerboom, C. M.; Williams, M. M. 2008.
Genetic basis for varied levels of injury to sweet corn hybrids from three
cytochrome P450- metabolized herbicides. Journal of the American Society for
Horticultural Science. 133: 438-447. DOI: https://doi.org/10.21273/JASHS.133.3.438
21. Pimentel, G.
V.; Guimarães, D. F.; Moreira, S. G.; Ávila, M. O. T.; Martins, I. A.; Bruzi,
A. T. 2019. Selectivity and effectiveness of herbicides in the grain sorghum
crop. Planta Daninha. 37: e019187771. DOI: https://doi.org/10.1590/S0100-83582019370100069
22. Queiroz, V.
A. V.; Carneiro, H. L.; Deliza, R.; Rodrigues, J. A. S.; Vasconcellos, J. H.; Tardin,
F. D.; Queiroz, L. R. 2012. Genótipos de sorgo para produção de barra de
cereais. Pesquisa Agropecuária Brasileira. 47: 287-293. DOI:
https://doi.org/10.1590/S0100-204X2012000200018
23. Santos, H.
G.; Jacomine, P. K. T.; Anjos, L. H. C.; Oliveira, V. A.; Lumbreras, J. F.;
Coelho, M. R.; Almeida, J. A.; Araujo Filho, J. C.; Oliveira, J. B.; Cunha, T.
J. F. 2018. Sistema Brasileiro de Classificação de Solos. Brasília: Embrapa 5ª
Ed. 356p.
24. Silva, A.
G.; Francischini, R.; Goulart, M. M. P. 2015. Desempenho agronômico e econômico
de híbridos de sorgo granífero na safrinha em Montividiu-GO. Revista de
Agricultura. 90: 17-30.
25. Silva, F. A.
S.; Azevedo, C. A. V. 2009. Principal Components Analysis in the Software
Assistat- Statistical Attendance. In: World congress on computers in
agriculture. 7. Reno-NV-USA: American Society of Agricultural and Biological
Engineers.
26. Silva, R. A.
A.; Oliveira, C. R.; Melo, C. A. D.; Mendes, K. F.; Reis, M. R. 2018. Residual
effect of tembotrione in soil with distinct textures and humidity. Revista
Brasileira de Ciências Agrárias. 13:e5594. DOI: 10.5039/AGRARIA.V13I4A5594
27. Sociedade
Brasileira Da Ciência Das Plantas Daninhas. 1995. Procedimentos para
instalação, avaliação e análise de experimentos com herbicidas. SBCPD:
Londrina. 42 p.
28. Stephenson,
D. O.; Bond, J. A.; Landry, R. L.; Edwards, H. M. 2015. Weed management in corn
with postemergence applications of tembotrione or thiencarbazone: tembotrione.
Weed Technology. 29: 350-358. DOI: https://doi.org/10.1614/WT-D-14-00104.1
29. Takano, H.
K.; Kalsing, A.; Fadin, D. A.; Rubin, R. S.; Neves, R.; Marques, L. H. 2018.
Chemical weed management in grain sorghum and selectivity of atrazine +
S-metolachlor to different hybrids. Revista Brasileira de Milho e Sorgo. 17:
460-473. DOI: https://doi.org/10.18512/1980-6477/rbms.v17n3p460-473