Revista de la Facultad de Ciencias Agrarias. Universidad Nacional de Cuyo. Tomo 56(2). ISSN (en línea) 1853-8665. Año 2024.

Original article

 

Selection of fungal isolates from Buenos Aires, Argentina, as biological control agents of Botrytis cinerea and Sclerotinia sclerotiorum

Selección de aislados fúngicos de Buenos Aires, Argentina, como agentes de control biológico de Botrytis cinerea y Sclerotinia sclerotiorum

 

Ricardo Arturo Varela Pardo1*,

Claudia Cristina López Lastra2,

Romina Guadalupe Manfrino2,

Darío Balcazar2,

Cecilia Mónaco3,

Eduardo Roberto Wright1

 

1Universidad de Buenos Aires. Facultad de Agronomía. Cátedra de Fitopatología. Av. San Martín 4453. Ciudad Autónoma de Buenos Aires. Argentina. C1417DSE.

2Centro de Estudios Parasitológicos y de Vectores (CEPAVE) CONICET-UNLP. Blvd. 120. La Plata. Provincia de Buenos Aires. Argentina. 1900.

3Universidad Nacional de La Plata. Facultad de Ciencias Agrarias y Forestales. Curso de Fitopatología. Calle 60 y 119. La Plata. Argentina. 1900.

 

*varelapardo@gmail.com

 

Abstract

This work aimed to select promising microorganisms as biological control agents (BCA). Forty-one soil samples were obtained from florihorticultural farms located in Buenos Aires, Argentina. Insect trap techniques and soil serial dilutions were used to obtain isolates of entomopathogenic fungi and fungi of genera Trichoderma, respectively. A total of 20 isolates included five Metarhizium and 15 Trichoderma. The isolates were lyophilized and deposited as reference cultures in the Mycological Collection of the Centro de Estudios Parasitológicos y de Vectores (CEPAVE). We performed dual culture studies of the isolates collected against the pathogens Botrytis cinerea Pers. (1797) and Sclerotinia sclerotiorum (Lib.) de Bary (1884). Eleven isolates were selected for growth promotion studies in tomato plants (Solanum lycopersicum L.). The isolates of Metarhizium taii Liang & Liu (1991) CEP-722, CEP-723 Trichoderma afroharzianum Chaverri, Rocha, Degenkolb & Druzhinina (2015) CEP-753 and CEP-754, molecularly identified by amplification of the ITS and TEF1α zones, presented the best results in the dual culture and growth promotion tests. Subsequent studies will evaluate virulence of fungal strains in insects.

Keywords: entomopathogenic fungi, biological control agents, molecular identification, dual culture, plant growth promotion

 

Resumen

El objetivo de este trabajo fue seleccionar microorganismos promisorios como agentes de control biológico (ACB). Se visitaron predios florihortícolas ubicados en Buenos Aires, Argentina, de los cuales se obtuvo un total de 41 muestras de suelo. Se utilizaron las técnicas de insecto trampa y diluciones seriadas de suelo para la obtención de aislados de hongos entomopatógenos y hongos del género Trichoderma respectivamente. Se obtu­vieron un total de 20 aislados, cinco pertenecientes al género Metarhizium y 15 aislados correspondientes al género Trichoderma. Los aislados fueron liofilizados y depositados como cultivos de referencia en la Colección Micológica del Centro de Estudios Parasi­tológicos y de Vectores (CEPAVE). Se realizaron estudios de cultivos duales de los aislados recolectados frente a los patógenos Botrytis cinerea Pers. (1797) y Sclerotinia sclerotiorum (Lib.) de Bary (1884). Se seleccionaron 11 aislados para la realización de estudios de promoción de crecimiento en plantas de tomate (Solanum lycopersicum L.). Los aislados de Metarhizium taii Liang y Liu (1991) CEP-722, CEP-723 y de Trichoderma afroharzianum Chaverri, Rocha, Degenkolb y Druzhinina (2015) CEP-753 y CEP-754, identificados molecularmente por medio de la amplificación de las zonas ITS y TEF1α, presentaron los mejores resultados en las pruebas de cultivo dual y promoción de crecimiento. Se espera avanzar en estudios posteriores que evalúen la virulencia de cepas de hongos en insectos.

Palabras clave: hongos entomopatógenos, agentes de control biológico, identificación molecular, cultivo dual, promoción de crecimiento de las plantas

 

Originales: Recepción: 17/07/2023 - Aceptación: 13/06/2024

 

 

Introduction

 

 

Stem “wet rot” caused by Sclerotinia sclerotiorum (Lib.) de Bary, (1884) and “grey rot” caused by Botrytis cinerea Pers. (1797) stand among the economically most important diseases in tomato (Solanum lycopersicum L.) Control of these diseases has relied on benzimidazole and dicarboximide fungicides. However, dicarboximide-resistant isolates are commonly detected (3). In this regard, biological control programs sustained by isolation and subsequent selection of antagonists (4) constitute a valuable alternative. Among beneficial biota, nutrient-fixing and solubilizing microorganisms produce plant growth-promoting substances, induce plant resistance to diseases or behave as antagonists to phytopathogenic agents (32).

The genus Trichoderma dominates the mycobiome of various ecosystems (10) with the ability to colonize the rhizoplane, rhizosphere and roots, producing numerous metabolites with antimicrobial and biostimulant activity. The plant growth stimulating effect is probably generated by the interaction among growth hormones synthesized by Trichoderma spp. and plant defense hormones (8). Some entomopathogenic fungi act as fungal growth inhibitors of phytopathogens (11, 12). The genus Metarhizium is composed of diverse common soil fungi with multifunctional lifestyles and different nutrient acquisition modes, either saprophytes, endophytes, and/or insect pathogens (37). Classically, studies have focused on their entomopathogenic characteristics, but their ability to inhibit phytopathogens was recently determined (13). Some studies have evaluated the endophytic capacity and colonization methods of this genus (2).

Metarhizium is a genetically diverse taxon, and colony color and conidial measurements of different species are not reliable identification factors (22). Alternatively, the molecular identification of Trichoderma is abundant, with no standard process, except the recently proposed gene standardization system for molecular identification (7). This study intends to develop biological inputs based on native and/or naturalized strains of Trichoderma and entomopathogenic fungi for agricultural pest management.

 

 

Materials and methods

 

 

Collection of soil samples

 

 

Six agroecological productions located in the province of Buenos Aires, Argentina were visited. Agroecological production of Bernardo Castillo (Street 519, El Pato, Buenos Aires. -34.905505, -58.200043); Organization 1610 (Street 1610, La Capilla, Buenos Aires. -34.9046857, -58.2666433); Agroecological production Santa Elena (Road Parque Pereyra Iraola, Pereyra, Buenos Aires. -34.83699, -58.093384); M. G. Agroecológica (Esteban Echeverría, Buenos Aires. -34.8672710, -58.4608800); Cooperative UTT Jaúregui. (Luján, Buenos Aires. -34.6204249, -59.1764168); and the experimental plot of Cátedra de Horticultura, Facultad de Agronomía de la Universidad de Buenos Aires (Av. San Martín 4453, C.A.B.A. -34.594101, -58.484467). Fourty-one soil samples were obtained from cultures of cabbage (Brassica oleracea var. capitata); basil (Ocimum basilicum); corn (Zea mays); lettuce (Lactuca sativa); tomato (Solanum lycopersicum); zucchini (Cucurbita pepo); bell pepper (Capsicum annuum); cherry tomato (Solanum lycopersicum var. cerasiforme); chives (Allium fistulosum); leek (Allium ampeloprasum var. porrum); fennel (Foeniculum vulgare); beets (Beta vulgaris); broccoli (Brassica oleracea var. italica); brussels sprouts (Brassica oleracea var. gemmifera); chard (Beta vulgaris var. cicla); carrot (Daucus carota); artichoke (Cynara cardunculus var. scolymus); broad bean (Vicia faba); turnip (Brassica rapa subsp. rapa); kale (Brassica oleracea var. sabellica); peas (Pisum sativum); and arugula (Eruca vesicaria). Sample number and species varied by establishment. As sampling criterion, soil from more vigorous plants within the same plot was also sampled, for later obtention of growth-promoting microorganisms (20, 39, 42). Five random subsamples within a crop row were collected for each sample from the first 20 cm below ridge surface with crop roots. Then, they were mixed into a single homogeneous sample with approximately 500 g from each crop, soil and rhizosphere, holding the greatest biodiversity (24). Fungal greatest abundance is found in the superficial layers or soil horizons (21). Samples were arranged in plastic bags indicating date, culture and origin, later transported to the laboratory in a closed expanded-polystyrene container and processed within 24 hours (tables 4 and 5).

 

Table 4. Metarhizium isolates obtained from soil samples.

Tabla 4. Aislados del género Metarhizium obtenidos de las muestras de suelo.

 

Table 5. Trichoderma isolates obtained from soil samples.

Tabla 5. Aislados del género Trichoderma obtenidos de las muestras de suelo.

 

 

Isolation of Metarhizium, Trichoderma, Botryris cinerea and Sclerotinia sclerotiorum fungi

 

 

From the collected soil samples, the insect trap technique was used with larvae of Tenebrio molitor L. from stage L3 to L4 as bait insects (1). Samples were sieved and 300 g were placed in 500 ml plastic containers with five larvae each, moistened with 20 ml of sterile distilled water and incubated at 18°C 65% relative humidity and 14:10 h light-darkness photoperiod. T. molitor carcasses prospected after seven days. Dead larvae with external mycosis were washed with sterile distilled water and placed in a humid chamber to increase sporulation. External mycelium present in T. molitor corpses (figure 5A) was obtained via direct isolation from the sporulated corpses, using a previously sterilized loop and subsequent sowing in Sabouraud Dextrose Agar culture medium, SDYA (Merck, Germany) with the addition of 5% chloramphenicol inside a 90 mm diameter Petri dish.

 

Figure 5. A) Detail of T. molitor larva corpse with sporulation of isolate CEP-722; B) Conidiophores, phialides and conidia of isolate CEP-753; C) Conidiophores, phialides and conidia of isolate CEP-754; D) Conidiophores, phialides and conidia of isolate CEP-722, E) Conidiophores, phialides and conidia of isolate CEP- 723; and F) Mycelium, conidia and chlamydospores of the isolate CEP-722.

Figura 5. A) Detalle de cadáver de larva de T. molitor con esporulación del aislado CEP-722; B)Conidióforos, fiálides y conidios del aislado CEP-753; C) Conidióforos, fiálides y conidios del aislado CEP-754; D) Conidióforos, fiálides y conidios del aislado CEP-722; E) Conidióforos, fiálides y conidios del aislado CEP-723; y F) Micelio, conidio y clamidosporas del aislado CEP-722.

 

 Trichoderma, fungi were isolated via serial dilution. Five grams of each soil sample were suspended in 100 ml of sterile distilled water in an Erlenmeyer and vortexed for one hour. Serial dilutions were made until reaching x106 spores/ml. Concentrations were determined with a Neubauer chamber, with each dilution inoculated in 90 mm diameter Petri dishes with Potato Glucose Agar, APG (Merck, Germany), and 2% streptomycin. The plates were incubated at 20-22°C for 72 hours. When fungal colonies developed, they were replicated in Petri dishes with APG (Merck, Germany) until purification.

Phytopathogenic fungi isolates from B. cinerea and S. sclerotiorum were obtained from the mycological bank of phytopathology (Facultad de Agronomía de la Universidad de Buenos Aires), with identification code BC18 and SS18 and pathogenicity tested on tomato (S. lycopersicum). After isolation and before bioassays, visual prospection of the isolates was carried out under a microscope (OLYMPUS BX51, Japan), identifying fungal types.

Monosporic isolates were preserved on sterile filter paper and were lyophilized, deposited and preserved (14) as reference cultures in the mycological collection of the “Centro de Estudios Parasitológicos y de Vectores” (CEPAVE) (CONICET-UNLP), La Plata, Argentina.

 

 

Laboratory tests in dual cultures of Metarhizium and Trichoderma isolates against B. cinerea and S. sclerotiorum

 

 

Ninety mm diameter Petri dishes were filled with 12 ml of APG (Merck, Germany) or 12 ml of SDYA (Merck, Germany) for Trichoderma and Metarhizium trials, respectively. Once culture medium solidified, two 10 mm diameter discs with seven-days mycelial growth were placed on the medium, 70 mm apart, one containing Trichoderma spp. or Metarhizium spp. and the other containing B. cinerea or S. sclerotiorum according to each treatment. A disk of each isolate (pathogens and antagonists) was inoculated as control against a disk of APG and/or SDYA without microorganisms. Petri dishes were incubated at 22°C and maintained under fluorescent lights with a 14:10 h light-darkness photoperiod in a completely randomized design, with eight replicates per treatment. Growth radius of colonies considering Trichoderma isolates against phytopathogenic fungi were measured with a millimeter ruler, at 1, 2, 3, 4, 5 and 6 days of trial with B. cinerea and at 1, 2, 3, 4 and 5 days with S. sclerotiorum. Considering Metarhizium isolates against phytopathogenic fungi, colony radius was measured at 4, 5, 6 and 7 days in both cases. The number of measurement days per trial differs according to growth rate in phytopathogen control treatments. Pathogen percentage inhibition (I) was calculated using the following equation:

 

where:

(I) = Percentage of mycelium growth inhibition

C = Pathogen growth on control plates

T = Pathogen growth in dual culture plates (19).

The data were analyzed by ANOVA and Tukey test (p> 0.05) with InfoStat software (version 2016e) (9).

 

 

Growth promotion assays in tomato plants var. platense (S. lycopersicum) inoculated with a spore suspension of isolates of the genera Metarhizium and Trichoderma

 

 

Tomato plants (S. lycopersicum) var. platense were inoculated with a spore suspension of Metarhizium sp. CEP-722, CEP-723, CEP-724, CEP-725 and CEP-726 or the Trichoderma sp. CEP-745, CEP-749, CEP-751, CEP-752, CEP-753 and CEP-754, selected after in vitro growth inhibition tests of B. cinerea and S. sclerotiorum. The test was conducted in a biotherium chamber under controlled conditions at an average temperature of 24°C, average relative humidity of 70%, and a 18-6 h light-darkness photoperiod, using high-pressure sodium vapor lamps (Philips Son T Agro 250 W, China). Seeds of tomato (S. lycopersicum) var. platense were sown in commercial substrate (Grow Mix Multipro, Argentina) in seedling trays with 50 x 50 mm holes and irrigated with sterile distilled water. Spore suspensions of Trichoderma spp. and Metarhizium spp. isolations were obtained in sterile distilled water standardized to a concentration of 1 x 107 spores/ml. Tomato plants (S. lycopersicum) were inoculated at 7, 21 and 35 days after being sown (31 days in the case of the genus Metarhizium) with 2 ml of conidial suspension on the substrate. Measurements were made 49 days after sowing in Trichoderma spp. and 37 days in Metarhizium spp. Plants were watered to field capacity with sterile distilled water throughout the study. The completely randomized block design had seven repetitions (seven plants) for each treatment (spore suspension of the Metarhizium sp. and Trichoderma sp. isolates selected). The variables analyzed were stem length (mm), stem diameter at cotyledon height (mm) and aerial fresh weight (g), using a millimeter rule, graduated metal caliper and precision balance, respectively. An ANOVA and means comparison with Tukey test (p > 0.05) were performed with InfoStat (2016e version) (9).

 

 

Morphological characterization, molecular identification and phylogenetic analysis of the isolates CEP-722, CEP-723, CEP-753 and CEP-754

 

 

Four isolates, two of the genus Metarhizium and two of the genus Trichoderma, were selected for best results on dual culture and promotion growth assays. Isolates were identified at genus level based on microscopic traits contrasted with taxonomic keys (5, 18). Once the material was mounted in lactophenol/cotton blue (0.01% w/v), shape and size of conidia, conidiogenous cells (phialide), mycelium and other traits were observed under an optical microscope (OLYMPUS BX51, Japan) and photographed with a digital camera (Sony DSCP73, Japan). Measurements were based on 25 observations per microstructure (conidia, phialide and chlamydospore) and average calculations. Molecular analysis and identification of the isolates included mycelium production in three 90 mm diameter Petri dishes with APG (Merck, Germany) as culture medium for Trichoderma and SDYA (Merck, Germany) for Metarhizium, kept at 23° ± 1°C for seven and 14 days, respectively. Then, mycelium was placed in 1.5 ml Eppendorf tubes. Tubes containing fungal material were placed in a container with liquid Nitrogen for eight minutes. DNA extraction was performed using the DNeasy extraction kit from Qiagen (Germany) according to manufacturer instructions. Extracted DNA was quantified using a micro-volume spectrophotometer (Nanodrop, Thermo Fisher Scientific, United States) and stored in a freezer. PCR was performed to amplify 2 DNA regions: 1) The ribosomal DNA region comprising the 3’ end of the 18S gene (small ribosomal subunit, SSU). The ITS1 internal spacer sequence (internal transcribed spacer 1), the 5.8S gene, the internal transcribed spacer 2 (ITS2) sequence and the 5’ end of the 28S gene (long ribosomal subunit), using the universal primers ITS4 (5’ -TCCTCCGCTTATTGATATGC-3’) and ITS5 (5’-GGAAGTAAAAGTCGTAACAAGG-3’) (30). 2) The 5’ region of the Elongation Factor 1-Alpha (TEF1α) gene with the primers EF1 983F (5’-ATGGGTAAGGARGACAAGAC-3’) and EF” 2218R (5’-ATGGGTAAGGARGACAAGAC-3’) (23). Amplification reactions were carried out in a final volume of 50 μl, containing 25 μl Mastermix Promega 2x (GoTaq, USA), 17 μl nuclease-free water, 2 μl PRIMER-F, 2 μl PRIMER- R and 4 μl of DNA for each isolate. Table 1 shows the thermocycling processes for the ITS1 and TEF1α regions.

 

Table 1. Thermocycling processes for the ITS1 and TEF1α regions.

Tabla 1. Procesos de termociclados para las regiones ITS1 y TEF1α.

* TEF1α region only. * Solo región TEF1α.

 

Electrophoresis was performed in 1% agarose gels (UNQ Biological Products, Argentina) stained with Ethidium bromide in 0.5x Buffer TBE (Roti-Gelstain, Germany), applying a voltage of 90 V for 50 min. Five μl of each reaction was mixed with 1 μl of loading buffer (Productos Biológicos UNQ, Argentina). A molecular weight marker was added (Ladder 100 bp, PB-L), to determine PCR product size. Gels were visualized with a UV transilluminator (Analytik-Jena, Alemania). The ribosomal region was expected at 530 bp, while the TEF1α gene was 620 bp. Positive reactions were stored at -20°C. Samples were then sent to Macrogen (South Korea) for purification and sequencing. The free software “Chromas” (38) cleaned the obtained sequencing then aligned using the online software “Clustal-Omega” (35). Agreement between the base pairs replicated by the forward and reverse primers of the four isolates analyzed was verified using the free software “Genedoc” (25). The sequences obtained were compared with those available in Genbank for each molecular marker (41). Sequences were aligned with 16 homologues and contrast of reference strains of Metarhizium with the sequencing of the ITS and TEF1α areas of Gutierrez et al. (2019) (table 2) and with 15 homologous species and a contrast obtained from the “Trichokey” data software (7), for Trichoderma (table 3). The phylogenetic tree was constructed with “Mr. Bayes” (version 3.2.7) (17), “Tracer” (version 1.7.2) (30) and “FigTree” (version 1.4.4) softwares (29).

 

Table 2. ITS and TEF1α gene sequences used for molecular identification of isolates CEP-722 and CEP-723.

Tabla 2. Secuencias de genes ITS y TEF1α utilizadas para la identificación molecular de los aislados CEP-722 y CEP-723.

 

Table 3. ITS and TEF1α gene sequences used for molecular identification of isolates CEP-753 and CEP-754.

Tabla 3. Secuencias de genes ITS y TEF1α utilizadas para la identificación molecular de los aislados CEP-753 y CEP-754.

 

 

Results

 

 

Isolates with access numbers CEP-722, CEP-723, CEP-724, CEP-725 and CEP-726 for Metarhizium spp. (table 4) and CEP-745, CEP-747, CEP-748, CEP-749, CEP-750, CEP-751, CEP-752, CEP-753, CEP-754, CEP-755, CEP-756, CEP-757, CEP -758, CEP-759 and CEP-760 for Trichoderma spp. (table 5) were obtained and admitted to the mycological bank of the “Centro de Estudios Parasitológico y de Vectores” (CEPAVE) (CONICET-UNLP), La Plata, Argentina.

 

 

Percentage inhibition of growth of B. cinerea and S. sclerotiorum caused by fungi of the genera Trichoderma and Metarhizium

 

 

Considering growth speed and physical conditions of the Petri dishes, results on dual culture trials are presented for day 4 for Trichoderma and day 7 for Metarhizium. Percentage growth inhibition of the pathogens stabilized after mycelial contact with the treatments or when an inhibition halo was generated. Trichoderma isolates with the highest inhibition percentages at day four of measurement in the dual culture tests against the pathogen B. cinerea were CEP-745, CEP-749, CEP-751, CEP-754 and CEP-756, these being 46.04; 51.75; 45.40; 45.40; and 43.18%, respectively. Inhibition percentage of S. sclerotiorum in Petri dishes on day 4 of measurement reached 55.88; 56.75; 58.25; 52.13; and 51.75% for isolates CEP-749, CEP-752, CEP-754, CEP-755 and CEP-758 respectively, presenting the highest mean values (figure 1).

 

Figure 1. Growth inhibition (%) of B. cinerea and S. sclerotiorum by isolates of the genus Trichoderma at day 4 of measurement.

Figura 1. Medias del porcentaje de inhibición del crecimiento de B. cinerea y S. sclerotiorum generado por aislados del género Trichoderma al día 4 de medición.

 

No significant differences were observed in growth percentage of B. cinerea at day seven among the different treatments of spores suspension Metarhizium isolates, but the highest mean values were recorded for CEP-722 and CEP-723, being 32.97 and 32.19%, respectively. The CEP-722 isolate presented the highest values in inhibition percentage of S. sclerotiorum at day seven, reaching a mean value of 27.34%. This was the only treatment with statistically significant differences concerning treatment CEP-726, which presented the lowest inhibition percentages (23.59%) against S. sclerotiorum (figure 2).

 

Figure 2. Growth inhibition (%) of B. cinerea and S. sclerotiorum by isolates of the genus Metarhizium at day 7 of measurement.

Figura 2. Medias del porcentaje de inhibición del crecimiento de B. cinerea y S. sclerotiorum generado por aislados del género Metarhizium al día 7 de medición.

 

 

Growth promotion of tomato plants (S. lycopersicum) var. platense inoculated with six isolates of Trichoderma and five isolates of Metarhizium

 

 

Considering all variables studied in the Trichoderma assays, control treatment presented the lowest mean values after application. Regarding stem diameter, the plant inoculated with spore suspension of the isolates CEP-751, CEP-752, CEP-753 and CEP-754 presented higher mean values than the plant inoculated with CEP-745, CEP-749 and the control. Stem length reached the highest mean value (21.37 cm) for the plant inoculated with spore suspension of the isolates CEP-754. Aerial weight mean was highest for the plants inoculated with spore suspension of CEP-753 and CEP-754, reaching 13.02 and 12.59 g, respectively (figure 3).

 

Figure 3. Mean values of stem diameter, aerial weight and stem length of tomato plants (S. lycopersicum) inoculated with spore suspensions of Trichoderma isolates in growth promotion assays.

Figura 3. Medias registradas en el diámetro de tallo, peso aéreo y longitud de tallo de plantas de tomate (S. lycopersicum) inoculadas con suspensiones de esporas de aislados del género Trichoderma en los ensayos de promoción del crecimiento.

 

Stem diameter, stem length and aerial weight of all treatments with Metarhizium fungi differed from the control. Regarding stem diameter, treatments inoculated with a spore suspension of the isolates CEP-722, CEP-724 and CEP-726 presented differences from the control, with mean values of 5.71, 5.50 and 5.57 mm respectively. Stem length of tomato plants inoculated with CEP-724 stood out with a mean of 33.54 cm followed by treatments inoculated with CEP-723 and CEP-726, with mean values of 32.84 and 32.44 cm respec­tively. Regarding aerial weight, the treatment with CEP-726 presented 12.15 g, the highest mean value (figure 4).

 

Figure 4. Mean values of stem diameter, aerial weight and stem length of tomato plants (S. lycopersicum) inoculated with spore suspensions of Metarhizium isolates in growth promotion assays.

Figura 4. Medias registradas en el diámetro de tallo, peso aéreo y longitud de tallo de plantas de tomate (S. lycopersicum) inoculadas con suspensiones de esporas de aislados del género Metarhizium en los ensayos de promoción del crecimiento.

 

 

Morphological characterization, molecular identification and phylogenetic Analysis of the isolates CEP-722, CEP-723, CEP-753 and CEP-754

 

 

Figures 5D, 5E and 5F show microscopic traits of the isolates CEP-722 and CEP-723. Conidiogenesis occurs in a dense hymenium; conidiophores branch repeatedly at wide angles resembling candelabra; conidiogenous cells are clavate or cylindrical, with a rounded to conical apex, no obvious neck; the apical wall thickens progressively as conidia are produced in long chains, adhering laterally to form prismatic (palisade) columns. The CEP-722 isolate was the only one presenting chlamydospores (figure 5F). Microscopic measurements and morphological traits of CEP-722 and CEP-723 coincide with Metarhizium taxonomic keys (18). Microscopic traits of isolates CEP-753 and CEP-754 are hyaline conidiophores, smooth-walled, up to 5 μm wide near the base, gradually tapering to about 2 μm wide near the apex, with relatively conspicuous septa distant; side branches borne at right angles, singly or in whorls of 2-3, gradually increasing in length. Phialides occur in whorls of 2-5, solitary and alternate, or more irregularly arranged, particularly towards the apex of the conidiophore. Terminals are more elongated and generally not constricted at the base. Conidia are unicellular, diluted green in color, smooth-walled, short cylindrical and almost oblong, with obtusely rounded apex (figures 5B and 5C). Microscopic measurements and morphological traits of CEP-753 and CEP-754 coincide with Trichoderma taxonomic keys (5).

Table 6, shows average measurements of each microstructure.

 

Table 6. Average measurements of reproductive structures of isolates CEP-722, CEP-723, CEP-753 and CEP-754.

Tabla 6. Promedios de mediciones de estructuras reproductivas de los aislados CEP-722, CEP-723, CEP-753 y CEP-754.

 

Isolates CEP-722 and CEP-723 had 100% homology to each other, considering the sequences used for ITS and TEF1α markers of Metarhizium spp. Therefore, CEP-722 and CEP-723 correspond to the genus Metarhizium and present 0% genetic variability with the species Metarhizium taii (Genbank access code ARSEF5714). The taxonomic classification for CEP-722 and CEP-723 with GenBank reference codes ITS: OP709693/TEF1α: OP792040 and ITS: OP709705/TEF1α: OP792039, is Fungi; Ascomycota; Pezizomycotina; Sordariomycetes; Hypocreales; Clavicipitaceae; Metarhizium (Sorokin, 1883): Metarhizium taii. Isolates CEP-753 and CEP-754 presented 100% homology to each other considering reference sequences used for ITS and TEF1α markers of Trichoderma spp. Phylogenetic analysis shows CEP-753 and CEP-754 correspond to Trichoderma and present 0% genetic variability with the species Trichoderma afroharzianum, Genbank access code GJS04-186/TRS835. The taxonomic classification for CEP-753 and CEP-754 with reference codes ITS: OP700049/TEF1α: OP792041 and ITS: OP709539/TEF1α: OP792042, respectively, is Fungi; Ascomycota; Euascomycetes; Hypocreales; Hypocraceae; Trichoderma and Hypocrea (Rifai, 1969): Trichoderma afroharzianum. Analytical “runs” of the sequences of selected microorganisms were carried out with MrBayes software (version 3.2.7). Databases were prepared according to published references. Figure 6 and figure 7 show the phylogenetic trees for CEP-722 and CEP-723 isolates of Metarhizium and for CEP-753 and CEP-754 isolates of Trichoderma, respectively.

 

Node values represent maximum likelihood probabilities.

Los valores entre las diagonales representan el valor de probabilidad de máxima verosimilitud.

Figure 6. Phylogenetic tree of ITS and TEF1α regions of CEP-722 and CEP-723 isolates.

Figura 6. Árbol filogenético de las regiones ITS y TEF1α de los aislados CEP-722 y CEP-723.

 

Tree node values represent maximum likelihood probability values.

Los valores entre las diagonales representan el valor de probabilidad de máxima verosimilitud.

Figure 7. Phylogenetic tree of ITS and TEF1α regions of CEP-753 and CEP-754 isolates.

Figura 7. Árbol filogenético de las regiones ITS y TEF1α de los aislados CEP-753 y CEP-754.

 

 

Discussion

 

 

Trichoderma spp. and Metarhizium spp. isolates evaluated against the phytopathogens Botrytis cinerea and Sclerotinia sclerotiorum in this study showed varying effects according to strain and isolate, as previously found (16, 34). In our in vitro studies, the Metarhizium taii strains CEP-722 and CEP-723, and the Trichoderma afroharzianum strains CEP-753 and CEP-754 presented different inhibition levels against different phytopathogens. This, because biological control agents of Trichoderma use varied mechanisms, like antifungal compounds, competition for nutrients, parasitism or pathogen inhibition, antibiosis, lytic enzymes (23) and systemic resistance (26, 28). Growth promotion of tomato plants (S. lycopersicum) inoculated with spore suspensions of Metahrhizium and Trichoderma fungi constitutes an important background when designing fertilization strategies in the cultivation of tomatoes (S. lycopersicum). The selected strains CEP-753 and CEP-754 of T. afroharzianum could be considered for nutritional management of crops. Our results agree with previous studies reporting a growth promotion in tomato plants (S. lycopersicum) var. platense inoculated with entomopathogenic fungi (33). Strains CEP-722 and CEP-723 of M. taii inhibit B. cinerea and S. sclerotiorum, in agreement with studies on the interaction of entomopathogenic and phytopathogenic microorganisms (11). Employing indigenous microorganisms could be a promising alternative to external inoculants, potentially reducing production costs and without introducing foreign microorganisms into the environment (6).

 

 

Conclusion

 

 

 

Metarhizium taii strains CEP-722 and CEP-723 and Trichoderma afroharzianum CEP-753 and CEP-754 were best candidates as biological control agents against Botrytis cinerea and Sclerotinia sclerotiorum. These strains constitute valuable tools for disease management and interesting ingredients for nutritional management of tomato (S. lycopersicum).

 

Acknowledgment

To Dr. Sebastián Arturo Pardo Seguel and Nicole Tomasic for the translation. This work was supported by CONICET (doctoral scholarship) and Universidad de Buenos Aires, Argentina. (UBACYT 20020160100066BA).

 

References

1. Aguilera-Sammaritano, J. A.; Lopez-Lastra, C. C.; Leclerque, A.; Vazquez, F.; Toro, M. E.; D’ Alessandro, C. P.; Cuthbertson, A. G. S.; Lechner, B. E. 2016. Control of Bemisia tabaci by entomopathogenic fungi isolated from arid soils in Argentina. In Biocontrol Science and Technology. 26(12): 1668-1682. DOI: 10.1080/09583157.2016.1231776

2. Allegrucci, N.; Velazquez, M. S.; Russo, M. L.; Pérez, M. E.; Scorsetti, A. C. 2017. Endophytic colonisation of tomato by the entomopathogenic fungus Beauveria bassiana: the use of different inoculation techniques and their effects on the tomato leafminer Tuta absoluta (Lepidoptera: Gelechiidae). DOI: 10.1515/jppr-2017-0045

3. Arias, L. A.; Tautiva, L. A.; Piedrahíta, W.; Chaves, B. 2007. Evaluación de tres métodos de control del Moho blanco (Sclerotinia sclerotiorum (Lib.) de Bary) en lechuga (Lactuca sativa L.). In Agronomía Colombiana. 25(1): 131-141.

4. Bettiol, W.; Morandi, M. A. V. 2009. Biocontrole de doenças de plantas: Uso e perspectivas. In EMBRAPA, Jaguariúna. 341 p.

5. Bissett, J. 1984. A revision of the genus Trichoderma. I. Section Longibrachiatum sect. nov. In Canadian Journal of Botany. 62(5): 924-931. DOI: 10.1139/b84-131

6. Boenel, M.; Fontenla, S.; Solans, M.; Mestre, M. C. 2023. Effect of yeast and mycorrhizae inoculation on tomato (Solanum lycopersicum) production under normal and water stress conditions. Revista de la Facultad de Ciencias Agrarias. Universidad Nacional de Cuyo. Mendoza. Argentina. 55(2): 141-151. DOI: https://doi.org/10.48162/rev.39.116

7. Cai, F.; Druzhinina, I. 2021. In honor of John Bissett: authoritative guidelines on molecular identification of Trichoderma. In Fungal Diversity. (107): 1-69. DOI: 10.1007/s13225-020- 00464-4. https://www.trichokey.com/

8. Carná, M.; Repka, V.; Skupa, P.; Sturdík, E. 2014. Auxins in defense strategies. In Biología. 69(10): 1255-1263. DOI: 10.2478/s11756-014-0431-3

9. Di Rienzo, J.; Balzarini, M.; Gonzalez, L.; Casanoves, F.; Tablada, M.; Walter Robledo, C. 2010. Infostat: software para análisis estadístico. https://www.infostat.com.ar/index.php

10. Ghorbanpour, M.; Omidvari, M.; Abbaszadeh-Dahaji, P.; Omidvar, R.; Kariman, K. 2018. Mechanisms underlying the protective effects of beneficial fungi against plant diseases. In Biological Control. 117: 147-157. DOI: 10.1016/j.biocontrol.2017.11.006

11. Gómez-De La Cruz, I.; Pérez-Portilla, E.; Escamilla-Prado, E.; Martínez-Bolaños, M.; Carrión-Villarnovo, G. L.; Hernández-Leal, T. I. 2017. Selection in vitro of mycoparasites with potential for biological control on coffee leaf rust (Hemileia vastatrix). In Revista Mexicana de Fitopatología. 36(1): 172-183. DOI: 10.18781/r.mex.fit.1708-1

12. Gothandapani, S.; Boopalakrishnan, G.; Prabhakaran, N.; Chethana, B. S.; Aravindhan, M.; Saravanakumar. M.; Ganeshan, G. 2014. Evaluation of entomopathogenic fungus against Alternaria porri (Ellis) causing purple blotch disease of onion. In Archives of Phytopathology and Plant Protection. 48(2): 135-144. DOI: 10.1080/03235408.2014.884532

13. Guigón-López, C.; Holguín-Ibarra, P. D.; Torres-Zapien, J. H.; García-Cruz, I.; Villapando, I.; Salas-Salazar, N. A. 2021. Metarhizium anisopliae reduces conidial germination and mycelium growth of the apple gray mold Botrytis cinerea. In Biological Control. 160: 1-9. DOI: 10.1016/j.biocontrol.2021.104660

14. Gutierrez, A. C.; Tornesello-Galván, J.; Manfrino, R. G.; Hipperdinger, M.; Falvo, M.; D’ Alessandro, C.; López-Lastra, C. C. 2017. Organización y conservación de la colección de hongos patógenos y simbiontes de insectos y otros artrópodos del CEPAVE (CONICET-UNLP), La Plata, Argentina. In Revista argentina de Microbiología. 49(2): 183-188. DOI: 10.1016/j. ram.2016.09.007

15. Gutierrez, A. C.; Leclerque, A.; Manfrino, R. G.; Luz, C.; Ferrari, W. A. O.; Barneche, J.; García, J. J.; Lopez Lastra, C. C. 2019. Natural occurrence in Argentina of a new fungal pathogen of cockroaches, Metarhizium argentinense sp. nov. In Fungal Biology. 123(5): 364-372. DOI: 10.1016/j.funbio.2019.02.005

16. Hidayah, B. N.; Khangura, R.; Dell, B. 2022. Biological control potential of Trichoderma species and bacterial antagonists against Sclerotinia sclerotiorum on canola in western Australia. In International Journal Agriculture and Biology. 27(3): 215-227. DOI: 10.17957/ IJAB/15.1919

17. Huelsenbeck, J. P.; Ronquist, F. 2001. MRBAYES: Inferencia bayesiana de filogenia. (versión 3.2.7, 2019). Bioinformática. 17: 754-755. https://github.com/NBISweden/MrBayes/tree/ v3.2.7a

18. Humber, R. A.; Lacey, L. A. 2012. Manual of techniques in invertebrate pathology. In Lacey, L. A. (Ed.). Academic Press, London. 151-187.

19. Joshi, B. B.; Bhatt, R. P.; Bahukhandi, D. 2010. Antagonistic and plant growth activity of Trichoderma isolates of Western Himalayas. In Journal of Environmental Biology. 31(6): 921-928.

20. Kovács, C.; Csótó, A.; Pál, K.; Nagy, A.; Fekete, E.; Karaffa, L. Kubicek, C. P.; Sándor, E. 2021. The biocontrol potential of endophytic Trichoderma fungi isolated from Hungarian grapevines. Part I. Isolation, identification and in vitro studies. Pathogens. 10(12): 1612. DOI: 10.3390/ pathogens10121612

21. Lavelle, P.; Spain, A. V. 2001. Soil ecology. In Dordrecht, NL. Kluwer Academic Publishers.

22. Lomer, C. J.; Bateman, R. P.; Johnson, D. L.; Langewald, J.; Thomas, M. 2001. Biological control of locusts and grasshoppers. In Annual Review of Entomology. 46(1): 667-702. DOI: 10.1146/ annurev.ento.46.1.667

23. Marra, R.; Ambrosino, P.; Carbone, V.; Vinale, F.; Woo, S. L.; Ruocco, M.; Ciliento, R.; Lanzuise, S.; Ferraioli, S.; Soriente, I.; Gigante, S.; Turrà, D.; Fogliano, V.; Scala, F.; Lorito, M. 2006. Study of the three-way interaction between Trichoderma atroviride, plant and fungal pathogens by using a proteomic approach. Current Genetics. 50: 307-321. DOI: 10.1007/s00294-006- 0091-0

24. Nannipieri, P.; Ascher, J.; Ceccherini, M.; Landi, L.; Pietramellara, G.; Renella, G. 2003. Microbial diversity and soil functions. In European journal of soil science. 54(4): 655-670. DOI: 10.1046/j.1351-0754.2003.0556.x

25. Nicholas, K. B.; Nicholas Jr, H. B.; Deerfield II, D. W. 1997. embnet. news. GeneDoc: Analysis and Visualization of Genetic Variation, 4, 14. (https://genedoc.software.informer.com/2.7/)

26. O’Brien, P. A. 2017. Biological control of plant diseases. Australasian Plant Pathology. 46: 293-304. DOI:10.1007/s13313-017-0481-4

27. O’ Donnell, K.; Ward, T. J.; Robert, V. A. R. G.; Crous, P. W.; Geiser, D. M.; Kang, S. 2015. DNA sequence-based identifcation of Fusarium: current status and future directions. In Phytoparasitica. 43(5): 583-595. DOI: 10.1007/s12600-015-0484-z

28. Pieterse, C. M.; Zamioudis, C.; Berendsen, R. L.; Weller, D. M.; Van Wees, S. C.; Bakker, P. A. 2014. Induced systemic resistance by beneficial microbes. Annual Review of Phytopathology. 52: 1-5. DOI:10.1146/annurev-phyto-082712-102340

29. Rambaut, A. 2009. FigTree. Tree figure drawing tool. http://tree. bio. ed. ac. uk/software/figtree/. http://tree.bio.ed.ac.uk/software/figtree/

30. Rambaut, A.; Drummond, A. J.; Xie, D.; Baele, G.; Suchard M. A. 2018. Posterior summarisation in Bayesian phylogenetics using Tracer 1.7. Systematic Biology. syy032. DOI: 10.1093/ sysbio/syy032. https://beast.community/tracer

31. Rifai, M. A. 1969. Sarawakus Lloyd, a genus of the pyrenomycete family Hypocreaceae. Reinwardtia. 7(5): 561-578.

32. Rivera, M. C.; Wright, E. R. 2013. Interacciones entre fitopatógenos y microorganismos benéficos en la rizósfera. In García-de Salamone, I. E.; Vázquez, S.; Penna, C.; Cassán, F. (Eds.). Rizósfera, biodiversidad y agricultura sutentable. Asociación Argentina de Microbiología. 33-46.

33. Russo, M. L.; Scorsetti, A. C.; Vianna, M. F.; Cabello, M.; Ferreri, N.; Pelizza, S. 2019. Endophytic effects of Beauveria bassiana on corn (Zea mays) and its herbivore, Rachiplusia nu (Lepidoptera: Noctuidae). Insects. 10(4): 110. DOI: 10.3390/insects10040110

34. Sarven, S.; Hao, Q.; Deng, J.; Yang, F.; Wang, G.; Xiao, Y.; Xiao, X. 2020. Biological control of tomato gray mold caused by Botrytis cinerea with the entomopathogenic fungus Metarhizium anisopliae. Pathogens. 9(3): 213. DOI: 10.3390/pathogens9030213

35. Sievers, F.; Higgins, D. G. 2014. Clustal Omega, accurate alignment of very large numbers of sequences. Multiple sequence alignment methods, 105-116. (https://www.ebi.ac.uk/ Tools/msa/clustalo/)

36. Sorokin, N. 1883. Plant parasites causing infectious diseases of man and animals. Vol. 2. Edition of the Chief Military Medical Directorat, St Petersburg. 168-169.

37. Stone, L. B. L.; Bidochka, M. J. 2020. The multifunctional lifestyles of Metarhizium: evolution and applications. In Applied Microbiology and Biotechnology. 104: 9935-9945. DOI: 10.1007/ s00253-020-10968-3

38. Technelysium, P. 2012. Chromas Lite version 2.1. South Brisbane, Queensland, Australia, 817. https://technelysium.com.au/wp/chromas/

39. Wang, X.; Wang, C.; Li, Q.; Zhang, J.; Ji, C.; Sui, J.; Liu, Z.; Song, X.; Liu, X. 2018. Isolation and characterization of antagonistic bacteria with the potential for biocontrol of soil‐borne wheat diseases. Journal of Applied Microbiology. 125(6): 1868-1880. DOI: 10.1111/ jam.14099

40. White, T. J.; Bruns, T. D.; Lee, S. B.; Taylor, J. W. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics, In Innis M. A.; Gelfand, D. H.; Sninsky, J. J.; White, T. J. (Eds.). PCR protocols: a guide to methods and applications. Academic Press, San Diego. 18(1): 315-322.

41. Zhang, Z.; Schwartz, S.; Wagner, L.; Miller, W. 2000. A greedy algorithm for aligning DNA sequences. In Journal Computational Biology; Journal Computation Molecular Cell Biology. 7(1-2): 203-214. DOI: 10.1089/10665270050081478

42. Zheng, X.; Wang, J.; Chen, Z.; Zhang, H.; Wang, Z.; Zhu, Y.; Liu, B. 2019. A Streptomyces sp. strain: Isolation, identification, and potential as a biocontrol agent against soilborne diseases of tomato plants. Biological control. 136: 104004. DOI: 10.1016/j.biocontrol.2019.104004