Revista de la Facultad de Ciencias Agrarias. Universidad Nacional de Cuyo. Tomo 56(2). ISSN (en línea) 1853-8665. Año 2024.

Original article

 

Different scenarios in land suitability assessment for Kernza®-intermediate wheatgrass (Thinopyrum Intermedium), a novel perennial grain crop for Argentina

Diferentes escenarios para evaluación de la aptitud de la tierras para Kernza®-intermediate wheatgrass (Thinopyrum Intermedium), un nuevo cultivo de granos perenne para Argentina

 

Mariano Tomas Cassani1, 2 *,

Maria Leticia Sabatte1,

Silvia Patricia Perez3,

Marcelo Juan Massobrio1

 

1Universidad de Buenos Aires. Facultad de Agronomía. Cátedra de Manejo y Conservación de Suelos, Av. San Martín 4453. C1417DSE. Ciudad de Buenos Aires. Argentina.

2Universidad de La Coruña, Centro de Investigaciones Científicas Avanzadas (CICA). Grupo AQUATERRA. As Carballeiras. s/n. Campus de Elviña 15071 A Coruña. España.

3Universidad de Buenos Aires. Facultad de Agronomía. Cátedra de Climatología y Fenología Agrícolas.

 

*cassani@landinstitute.org

 

Abstract

Land degradation, climate change, soil and water contamination have led to increased interest in sustainable agricultural practices. Most agricultural practices are focused on growing annual crops, which require significant amounts of synthetic fertilizers, contribute to CO2 emissions and disrupt natural biological processes. Natural Systems Agriculture has been developed to reverse this paradigm by imitating nature through perennial grain crops. Kernza® intermediate wheatgrass (Thinopyrum intermedium) is a promising perennial crop producing healthy grain for direct human consumption and forage for livestock while providing multiple ecosystemic services. Given these reasons, consider its cultivation in Argentina is relevant. This research aimed to predict Kernza crop suitability in the Azul district by modeling different climatic and soil densification scenarios. The model showed that Kernza can be grown in Azul, and that southern areas were most suitable. This model allowed generating information for land use planners and farmers to consider planting in Argentina, particularly, in Azul.

Keywords: land evaluation • climate scenarios • land degradation • perennial crops

 

Resumen

La degradación del suelo, el cambio climático y la contaminación del suelo y el agua han suscitado un mayor interés por una agricultura más sostenible. La mayoría de las prácticas agrícolas se centran en cultivos anuales, que requieren grandes cantidades de fertilizantes sintéticos, contribuyen a un aumento en las emisiones de CO2 y perturban los procesos biológicos naturales. El “Natural Systems Agriculture” se ha desarrollado con el objetivo de revertir este paradigma mediante la imitación de la naturaleza a través de cultivos de granos perennes. El Kernza® intermediate wheatgrass (Thinopyrum intermedium) es un cultivo perenne muy prometedor porque produce grano para consumo humano, forraje para el ganado y proporciona múltiples servicios ecosistémicos. Por ello, es relevante considerar su cultivo en Argentina. El objetivo fue predecir la aptitud de Kernza mediante la modelización de diferentes escenarios climáticos y de densificación del suelo en el partido de Azul, Argentina. El modelo demostró que el Kernza puede ser cultivado en Azul, siendo las zonas del sur las más aptas. El Kernza es un cultivo muy prometedor y este modelo permitió generar información para que los planificadores del uso de la tierra y los agricultores consideren su plantación en Azul, y en Argentina.

Palabras claves: evaluación de tierras • escenarios climáticos • degradación de tierras • cultivos de granos perennes

 

Originales: Recepción: 30/08/2023 - Aceptación: 28/05/2024

 

 

Introduction

 

 

Land degradation, climate change, soil and water contamination have led to increased interest in sustainable agricultural practices (4, 23, 35, 54). Despite this, most agricultural practices are still focused on growing annual crops, which require significant amounts of synthetic fertilizers, labour, contribute to emissions of CO2 and disrupt natural biological processes (2, 10). This reduces the current and potential capacity to produce goods and services, both qualitatively and quantitatively (19, 20, 21). Additionally, this causes an increase in the energy necessary to produce environmental and economic liabilities (56). In 1980, Wes Jackson published the book New Roots for Agriculture (32) to reverse this paradigm, developing the concept of Natural Systems Agriculture (NSA). In this perennial food-grain-producing system, soil erosion and agrochemical contamination decrease as fossil fuel dependency decreases (33). Its objective was to mimic nature using perennial grain crops. Unlike annuals, perennials improve soil structure and water retention capacity, contribute to climate change adaptation and mitigation, and promote biodiversity and ecosystemic functions (2, 12, 25). Additionally, they improve rural economies by reducing external inputs (i. e., reducing dependence on fossil fuels and agrochemicals) and labour intensity (11, 12, 44).

Kernza® is the trade name of the intermediate wheatgrass [Thinopyrum intermedium (Host) Barkworth and D.R. Dewey], a novel perennial grain crop recently becoming commercially available in the USA (15, 41). Kernza´s deep root system reduces nutrient leaching while increasing water use efficiency and soil carbon content (10, 14, 25). In addition, Kernza provides a grain suitable for direct human consumption, forage for livestock, and multiple ecosystemic services for enhanced environmental quality (12, 24, 28, 49, 52).

Territory is used for different purposes, occasionally complementary but mostly conflicting (i.e., they cannot be located simultaneously in the same area). For these reasons, land-use planning plays a major role in considering exploitation of natural resources; assessing requirements and land capacity, identifying and resolving conflicts among competing uses and seeking long-term sustainable solutions (19, 20, 31). Land evaluation assesses land suitability for specific purposes, constituting an integral part of land-use planning, providing information for decision-making by land-use planners (19, 20, 40). Land evaluation involves the execution and interpretation of basic studies of climate, soil, vegetation, and any aspect regarding land-use requirements (19). Several methodologies aid the development of land evaluation systems, including modeling, such as expert systems. Models allow predicting outcomes under real conditions and generate new hypothetical outcomes in scenarios of change, such as different climate or soil densification scenarios. These hypothetical outcomes facilitate management and adaptation measures to future changes (31, 42, 50, 51).

While perennial grain crops are not widely cultivated worldwide (8, 36) the various agro-ecological benefits they potentially provide make them strong candidates for cultivation in Argentina. This study aimed to predict Kernza crop suitability in Azul district by modelling different climatic and soil densification scenarios in Azul district, Argentina.

 

 

Materials and methods

 

 

Study area

 

 

Azul district is located in the centre of Buenos Aires province, Argentina (36°14’ S - 37°27’ S and 59°8’ W - 60°10’ W) in the Pampa region, with an area of 6,551 km2 (figure 1) and 70 545 inhabitants. It is divided into two large areas: southern Pampa in the south and flooding Pampa in the north (46).

 

 

(Landsat/Copernicus image. ©Google, 2022).

Figure 1. Location of Azul district in Argentina.

Figura 1. Ubicación del partido de Azul en la Argentina.

 

According to the Köppen classification (34), Azul has a humid temperate climate (Cfb) with oceanic influence, hot summers, and precipitations evenly distributed throughout the year (7, 43, 53). Mean annual rainfall is 921 mm (1931-2017 series). Minimum annual rainfall recorded in 1935 was 590 mm, and maximum annual rainfall in 2012 was 1449 mm. In addition, different precipitation periodicities were observed in intervals of 12 and 2.5 years (6, 53). Azul mean annual temperature is 14, 2°C (1997-2018 series). January is the hottest month with an average temperature of 21, 8°C, while August is the coldest with an average of 7 °C. Mean annual potential evapotranspiration is 752 mm. December, January and February present the higher atmospheric demand.

Soils are Argiudolls, Hapludolls, Natraquolls and Natraqualfs (30, 46, 47). Land uses are agriculture, livestock, and crop-livestock systems (57). Soybean (Glycine max), corn (Zea mays), wheat (Triticum aestivum), barley (Hordeum vulgare) and sunflower (Helianthus annuus) are the major crops. Livestock plays an important role in the district, especially in the Pampa Deprimida area (39).

 

 

Kernza crop suitability modelling

 

 

The ALES (Automated Land Evaluation System) v4.65e software (50, 51) was modelled under the FAO Land Evaluation Framework (19, 20, 21). Model inputs were Kernza requirements (table 1), soil characteristics (table 2), and climate characteristics (table 3).

 

Table 1. Kernza land use requirements.

Tabla 1. Requerimientos del uso de la tierra para Kernza.

Most references concerning the northern hemisphere have been adapted for the southern hemisphere. * Andrés Locatelli (Universidad de la República, Uruguay), personal communication, 2020.

La bibliografía consultada corresponde al hemisferio norte y fue adaptada al hemisferio sur. * Andrés Locatelli (Universidad de la República, Uruguay), comunicación personal, 2020.

 

Table 2. Selected soil characteristics, classes and ranks.

Tabla 2. Características de los suelos seleccionadas, sus clases y rangos.

 

Table 3. Climate characteristics selected, classes and ranks.

Tabla 3. Características del clima seleccionadas, sus clases y rangos.

 

Suitability was determined by comparing Kernza crop requirements with land qualities (table 4) selected through decision trees (Supplemental data 2).

 

Table 4. Simulation of different precipitation scenarios. Different precipitation probabilities are observed for each period and each soil densification.

Tabla 4. Simulación de los diferentes escenarios de precipitación para las diferentes probabilidades de ocurrencia en cada periodo del cultivo y densificación del suelo.

 

The model was based on Kernza land utilization involving grain and forage production without irrigation for four years. Farming techniques include direct drilling, fertilization with nitrogen and phosphorous, phytosanitary applications and mechanized harvesting. The crop is seeded in March, with grain harvesting in January, followed by two forage harvests, one after grain harvest and another in April or May.

 

 

Kernza crop requirements

 

 

Edaphoclimatic characteristics (table 2 and table 3) were selected, and different classes and ranks were defined (Locatelli 2020*, 2, 9, 14, 16, 22, 28, 36, 41, 48). Soil data were obtained from soil profiles of the 1:50000 soil maps (13, 30). Climate data were obtained from the climate analysis by Cassani (2020) and SMN (2018). Available water content up to 1 meter was indirectly obtained with the Travasso & Suero model (1994), developed and validated for the southern Pampa region.

Decision trees were assembled according to edaphoclimatic characteristics and logical criteria based on expert knowledge determining land qualities (31, 40, 42). Seven land qualities were determined for model development (Supplemental data 2): Oxygen availability (Disp_O), Root depth (Exp_Rad), Nutrient availability (Disp_Nut), Exchangeable sodium percentage (%PSI), Water logging (Aneg) and Available water (Disp_Agua). Land qualities were assessed using four classes according to the FAO framework (1976, 1985, 2007), from the lowest (1) to the highest level of use limitation (4).

 

 

Climate and soil densification scenarios

 

 

Scenarios were proposed according to cumulative probabilities of precipitation for P20%, P50% and P80% (table 4). These scenarios were calculated with data obtained from Cassani (2020) and the SMN (2018).

Considering that past or current land use can affect planning and change crop suitability, scenarios of maximum and minimum soil densification were simulated for each cumulative precipitation setting. As physical degradation is the major soil degradation in Argentina (1, 5, 58), a theoretical maximum bulk density was calculated according to Duval et al. (2015) equation [1] as maximum soil densification. Minimum soil densification was determined as a bulk density of 1.2 g/cm³ (47) (Supplemental data 1), simulating the occurrence of soil densifications, which decrease rainfall infiltration and percolation. On average, this led to a 20% reduction in water availability, generating different starting points for the Kernza suitability model for available water (table 4). Thus, lands with high soil densification are physically degraded, so the available water is lower. Also, in case of excess precipitation, drainage capacity is limited.

 

 

Kernza suitability assessment was conducted by comparing Kernza requirements vs. land qualities. Kernza suitability was evaluated by considering the maximum limitation method (31) for each decision tree created (Supplemental data 2). We have expanded the four FAO categories into nine subcategories (figure 2; table 5) indicating suitability of each soil map unit.

 

Figure 2. Land suitability for Kernza in minimum soil densification scenario for P20% (A), P50% (C) and P80% (E) scenarios, and in maximum soil densification scenario for P20% (B), P50% (D) and P80% (F).

Figura 2. Aptitud de la tierra para Kernza en el escenario de mínima densificación del suelo para los escenarios P20% (A), P50% (C) y P80% (E), y para el escenario de máxima densificación del suelo para los escenarios P20% (B), P50% (D) y P80% (F).

 

Table 5. Occupied land suitability for Kernza in minimum soil densification scenario for P20% (A), P50% (C) and P80% (E) climate scenarios (km2).

Table 5. Superficie ocupada por las distintas aptitudes para Kernza en el escenario de mínima densificación del suelo y P20% (A), P50% (C) y P80% (E) (km2).

 

The assessment focuses on identifying potential limitations and risks associated with the different scenarios. In the maximum soil densification scenario, current unsuitable land can be reverted and turned into suitable land. This is not the case for permanently unsuitable land (figure 2, table 6). Results were mapped using QGIS v3.10.8-A Coruña (49).

 

Table 6. Occupied land suitability for Kernza in maximum soil densification scenario for P20% (B), P50% (D) and P80% (F) climate scenarios in Km2.

Table 6. Superficie ocupada por las distintas aptitudes para Kernza en el escenario de máxima densificación del suelo y P20% (B), P50% (D) y P80% (F) en Km2.

 

Soil map units identified in the 1:50000 maps (13, 30) were used as land units for this study. A total of 134 mapping units were identified, composed of 90 soil series and their phases (Supplemental data 1).

 

In the minimum soil densification scenario, most lands in northern Azul were classified as unsuitable considering all precipitation probabilities. By contrast, most land in south Azul was classified as suitable in all precipitation probabilities (figure 2A, 2C and 2E). In P20%, suitable lands were classified under low to very low suitabilities (figure 2A). On the other hand, in P50% and P80% suitable land was mostly classified under moderately high to very high suitabilities (figure 2C and 2E). In the P20% scenario, no area was occupied by land with high suitability, less high suitability, and moderately high suitability. A considerably small area was occupied by the moderately low and low suitability classes. The remaining area was occupied by very low to unsuitable classes (table 5). In the P50% and P80% scenarios, classes with high and less high suitability occupied a significant area, with equal occupancy in both scenarios. In the P50% scenario, the class with moderately high suitability obtained a high occupation area concerning the P80% scenario, where it was practically insignificant. A shift was observed in the area occupied in the P80% scenario towards the class with low suitability in relation to the P50% scenario. In contrast, the class presenting very low suitability was higher in the P50% scenario than in the P80% scenario (table 5).

Regarding the maximum soil densification scenario, in P20% all land was classified as unsuitable. Most northern lands were classified as permanently unsuitable. In the south, most of the lands were currently unsuitable (figure 2B). In P50% and P80%, most northern lands were classified as unsuitable. In contrast, most lands in south Azul were classified as suitable. Suitable lands were classified under very high to moderately low suitabilities. In contrast to P50%, P80% was shown as currently unsuitable land (figure 2D and figure 2F).

The largest area in the conditionally unsuitable class was in the P20% scenario, followed by the P80%. This first class was not observed in the P50% scenario. In the P50% and P80% scenarios, the highly suitable and less highly suitable classes occupied a significant area, with equal occupancy in both scenarios. In the P50% scenario, the moderately high suitable class obtained a high area of occupation in relation to the P80% scenario, where it was practically insignificant. A shift in the area occupied towards the conditionally unsuitable class was shown in the P80% scenario in relation to the P50% scenario. In contras clases with low to very low suitability were higher in the P50% scenario than in the P80% scenario (table 6).

 

 

Discussion

 

 

Precipitation probability strongly influenced results for all scenarios, notably affecting available water. Oxygen availability and exchangeable sodium percentage played a significant role given the very high levels of exchangeable sodium (%PSI) and poor drainage. As a result, most of the land in Azul was unsuitable for Kernza. However, suitable land for Kernza could be found in the Southern region, with favourable cropping conditions. Irigoin (2011) in the Pampa Arenosa region, Argentina, also documented these results, linked to the different climatic scenarios and water availability. In both Pampa Serrana and Pampa Arenosa climate fluctuations related to the ENZO (El Niño Southern Oscillation) phenomenon, are recurrent every 2-3 years (6, 34), making ENZO an important factor in land use planning for Argentina.

Maximun soil densification resulted agreed with Agostini et al. (2018) for southern Pampa. Furthermore, the incorporation of the currently unsuitable class was appropriate for the maximum soil densification scenario, allowing the identification of temporarily unsuitable land for Kernza. Soil densification can reversibly modify soil water dynamics, and currently unsuitable land can become suitable for Kernza when densification is removed. In the P20% maximum densification scenario, as water infiltration and percolation were restricted due to densification, annual available water was 321 mm, resulting in all land being classified as unsuitable. A quite different situation was shown in the P20% minimum soil densification scenario with 401 mm, with lands classified as suitable and unsuitable. The maximum soil densification for P80% scenario showed different land classification vs. P50%. Suitable lands in P50% became unsuitable in P80%. At higher precipitation, excess water due to soil densification led to higher waterlogging and lower soil oxygen availability. In Azul, suitable areas for Kernza coincide with historical wheat areas (29, 57).

However, according to Law et al. (2022) the environmental benefits do have trade-offs with the economic performance of Kernza, as low grain yields would require substantial price premiums to produce net returns equivalent to comparable annual crops. Kernza’s current grain yield is relatively low when contrasted with annual wheat, i.e., up to 1,660 kg ha-1 in experimental fields (26, 36), but breeders expect IWG to achieve comparable yields soon (3, 15). The possibility to harvest forage twice a year provides an additional source of income (24, 45). Furthermore, Kernza’s deep root system can explore deep soil water, decreasing drought stress (9) due to climate change and the ENZO. Additionally, considering annual crops under fertilization (14) nitrogen leaching decreased while increasing nutrient cycling, and improving fertilizing efficiency, with a consequent reduction in costs. Moreover, bearing in mind that decarbonization is being discussed worldwide (27), carbon sequestration by roots and a lower dependence on fossil fuels for production (12) could position Kernza as the ideal crop. The crop’s smaller carbon footprint could be used for carbon credits bringing in additional revenue through inclusion in programs such as the Ecosystem Services Market Consortium (2023). All these ecosystemic services must be considered in the economic equation.

After the recent commercial release of perennial rice in China, shifting from annuals to perennials seems more possible than ever (59). Given all the ecosystemic services provided, Kernza constitutes a very promising crop to consider in the Pampa region, Argentina with temperate climates and wild winters like Uruguay (38). Nextly, Kernza is to be field-tested and promoted among farmers in Azul and the rest of Argentina.

 

 

Conclusions

 

 

The land suitability model showed that Kernza can be grown in Azul and that southern areas are most suitable. These lands were mostly Argiudolls and Hapludolls, generally deep, with loamy textures, high organic matter content and granular structures in topsoil, and blocky structures in subsoil. They are well to moderately-well drained with high available water. These soil characteristics satisfy Kernza requirements, in concordance with historical wheat areas in Azul.

In addition, the different precipitation scenarios: P20%, P50% and P80%, allowed for determining land suitability. Different precipitation probabilities affect modelled performance of land units by increasing water supply and availability, while different soil densification scenarios modified available water and waterlogging. The maximum suitability expression was in P50% scenario, an average occurrence climatic scenario for both soil densification scenarios.

Given all the ecosystemic services provided, Kernza constitutes a very promising crop for land use planners and farmers in Azul and Argentina.

 

Acknowledgments

This work was supported by University of Buenos Aires, projects UBACyT Grant/Award Number: Res. 20020130100690BA. Also, by the INDITEX Group and the University of La Coruña, “InMOTION Program, axudas para estadías predoutorais INDITEX-UDC 2020”. Special thanks to Andres Locatelli Fagúndez from University of Republic, Uruguay and Tim Crews from The Land Institute for critical reviews; and Laura van der Pol from The Land Institute for her support.

 

References

1. Agostini, M. A.; Dominguez, G. F.; Studdert, G. A.; Tourn, S. N. 2018. Impacto de diferentes prácticas de manejo sobre algunas propiedades físicas de suelos del sudeste bonaerense. In Perla Imbellone, Carina Álvarez (Eds.). Compactaciones naturales y antrópicas en suelos argentinos. Asociación Argentina de la Ciencia del Suelo: 495-512.

2. Bajgain, P.; Zhang. X.; Jungers, J. M.; DeHaan, L. R.; Heim, B.; Sheaffer, C. C.; Wyse, D.; Anderson, J. A. 2020. ‘MN-Clearwater’, the first food-grade intermediate wheatgrass (Kernza perennial grain) cultivar. J. Plant Regist. 14: 288-297. https://doi.org/10.1002/plr2.20042

3. Batello, C.; Wade, L.; Cox, S.; Pogna, N.; Bozzini, A.; Choptiany, J. 2013. Perennial crops for food security: Proceedings of the FAO Expert Workshop. Rome. FAO.

4. Campbell, B. M; Beare, D. J.; Bennett, E. M.; Hall-Spencer, J. M.; Ingram, J. S. I.; Jaramillo, F.; Ortiz, R.; Ramankutty, N.; Sayer, J. A.; Shindell, D. 2017. Agriculture production as a major driver of the Earth system exceeding planetary boundaries. Ecology and Society. 22(4): 8. https://doi.org/10.5751/ES-09595-220408

5. Casas, R. R. 2017. La degradación del suelo en la Argentina. En: Manejo y conservación de suelos: con especial énfasis en situaciones argentinas. In: Colaborador: Vázquez, M. E. (col). AACS (ed). Asociación Argentina Ciencia del Suelo. 386 p.

6. Cassani, M. T. 2020. La mesofauna edáfica como indicadora de la estabilidad del ecosistema: su efecto sobre la tasa de descomposición de rastrojos. Magister thesis. Universidad de Buenos Aires. Retrieved from: http://ri.agro.uba.ar/cgi-bin/library.cgi?a=d&c=tesis&d=2020cassanimarianotomas

7. Cassani, M. T.; Sabatté, M. L.; Rubín, M. R.; Sfeir, A. J.; Massobrio, M. J. 2021. Litter decomposition by soil fauna: effect of land use in agroecosystems. Heliyon. 7(10). https://doi.org/10.1016/j.heliyon.2021.e08127

8. Chapman, E. A.; Thomsen, H. C.; Tulloch, S.; Correia, P. M. P.; Luo, G.; Najafi, J.; DeHaan, L. R.; Crews, T. E.; Olsson, L.; Lundquist, P. O.; Westerbergh, A.; Pedas, P. R.; Knudsen, S.; Palmgren, M. 2022. Perennials as future grain crops: Opportunities and challenges. Frontiers in Plant Science. 13: 898769. https://doi.org/10.3389/fpls.2022.898769

9. Clement, C.; Sleiderink, J.; Svane, S. F.; Smith, A.; Diamantopoulos, E.; Desbrøll, D.; Thorup-Kristensen, K. 2022. Comparing the deep root growth and water uptake of intermediate wheatgrass (Kernza®) to alfalfa. Plant Soil. 472: 369-390. https://doi.org/10.1007/s11104-021-05248-6

10. Cox, T. S.; Van Tassel, D. L.; Cox, C. M.; DeHaan, L. R. 2010. Progress in breeding perennial grains. Crop Pasture Science. 61: 513-521. https://doi.org/10.1071/CP09201

11. Crews, T. E.; Rumsey, B. E. 2017. What agriculture can learn from native ecosystems in building soil organic matter: a review. Sustainability. 9(4): 1-18.

12. Crews, T.; Carton, W.; Olsson, L. 2018. Is the future of agriculture perennial? Imperatives and opportunities to reinvent agriculture by shifting from annual monocultures to perennial polycultures. Global Sustainability. 1(E11). https://doi:10.1017/sus.2018.11

13. Cruzate, G. A.; Pizarro, M. J.; Banchero, S.; Mercuri, P. 2010. Infraestructura de datos espaciales del INTA-GeoINTA. V Jornadas Idera. Santa Fe.

14. Culman, S. W.; Snapp, S. S.; Ollenburger, M. Basso, B.; DeHaan, L. R. 2013. Soil and water quality rapidly responds to the perennial grain Kernza wheatgrass. Agronomy Journal. 105: 735-744. https://doi.org/10.2134/agronj2012.0273

15. DeHaan, L.; Wang, S.; Larson, S.; Kantarski, T.; Zhang, X.; Cattani, D. 2014. Current efforts to develop perennial wheat and domesticate Thinopyrum intermedium as a perennial grain. In C. Batello, L. Wade, S. Cox, N. Pogna, A. Bozzini, & J. Choptiany (Eds.). Perennial crops for food security: Proceedings of the FAO expert workshop. FAO. p. 72-89.

16. de Oliveira, G.; Brunsell, N. A.; Sutherlin, C. E.; Crews, T. E.; DeHaan, L. R. 2018. Energy, water and carbon exchange over a perennial Kernza wheatgrass crop. Agricultural and Forest Meteorology. 249: 120-137. https://doi.org/10.1016/j.agrformet.2017.11.022

17. Duval, M. E.; Galantini, J. A.; Martínez, J. M.; López, F. M.; Wall, L. G. 2015. Evaluación de la calidad física de los suelos de la región pampeana: efecto de las prácticas de manejo. Ciencias Agronómicas. Revista XXV. 33. Año 15.

18. ESMC (Ecosystem Services Market Consortium). 2023. Retrieved from https://ecosystemservicesmarket.org/

19. FAO. 1976. A framework for land evaluation. FAO Soils Bulletin 32.

20. FAO. 1985. Guidelines: Land evaluation for irrigated agriculture. FAO Soils Bulletin 55.

21. FAO. 2007. Land evaluation: Towards a revised framework. FAO discussion papers.

22. Fernández, C. W.; Ehlke, N.; Sheaffer, C. C.; Jungers, J. M. 2020. Effects of nitrogen fertilization and planting density on intermediate wheatgrass yield. Agron. J. 112: 4159-4170.

23. Foley, J. A.; DeFries, R.; Asner, G. P.; Barford, C.; Bonan, G.; Carpenter, S. R.; Chapin, F. S.; Coe, M. T.; Daily G. C.; Gibbs H. K. 2005. Global consequences of land use. Science. 309(5734): 570-574. http://dx.doi.org/10.1126/science.1111772

24. Franco, J. G.; Berti, M. T.; Grabber, J. H.; Hendrickson, J. R.; Nieman, C. C.; Pinto, P.; Van Tassel, D.; Picasso, V. D. 2021. Ecological intensification of food production by integrating forages. Agronomy. 11: 1-26. https://doi:10.3390/agronomy11122580

25. Glover, J. D.; Culman, S. W.; DuPont, S. T.; Broussard, W.; Young, L.; Mangan, M. E.; Mai, J. G.; Crews, T. E.; DeHaan, L. R.; Buckley, D. H.; Ferris, H.; Turner, R. E.; Reynolds, H. L.; Wyse, D. L. 2010. Harvested perennial grasslands provide ecological benchmarks for agricultural sustainability. Agriculture Ecosystems and Environments. 137: 3-12. https://doi.org/10.1016/j.agee.2009.11.001

26. Guevara-Ochoa, C.; Lara, B.; Vives, L.; Zimmermann, E.; Gandini, M. 2018. A methodology for the characterization of land use using medium-resolution spatial images. Revista Chapingo Serie Ciencias Forestales y del Ambiente. 24(2): 207-218. https://doi.org/10.5154/r.rchscfa.2017.10.061

27. Hanna, R.; Victor, D. G. 2021. Marking the decarbonization revolutions. Nature Energy. 6(8): 568-571. https://doi.org/10.1038/s41560-021-00854-1

28. Hunter, M. C.; Sheaffer, C. C.; Culman, S. W.; Jungers, J. M. 2020. Effects of defoliation and row spacing on intermediate wheatgrass I: grain production. Agron. J. 112: 1748-1763.

29. Imbellone, P. A.; Giménez, J. E.; Panigatti, J. L. 2010. Suelos de la Región Pampeana: Procesos de formación. Ediciones INTA. Buenos Aires. 320 p.

30. INTA. 2005. Carta de Suelos de la República Argentina. Instituto Nacional de Tecnología Agropecuaria de Argentina. Argentina. Retrieved from: http://anterior.inta.gov.ar/suelos/cartas/index.htm el día 06/10/2020.

31. Irigoin, J. 2011. Sistemas de evaluación de tierras y elaboración de modelos de aptitud de uso agrícola, para distintos escenarios climáticos, en un sector de la subregión pampa arenosa (Prov. de Bs. As., Argentina). Magister thesis. University of Buenos Aires. Retrieved from: http://ri.agro.uba.ar/files/download/tesis/maestria/2011irigoinjulieta.pdf

32. Jackson, W. 1980. New roots for agriculture. University of Nebraska Press.

33. Jackson, W. 2002. Natural systems agriculture: A truly radical alternative. Agriculture, Ecosystems & Environment. 88(2): 111-117. https://doi.org/10.1016/s0167-8809(01)00247-x

34. Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. 2006. World Map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift. 15(3): 259-263.

35. Lal, R. 2015. Sequestering carbon and increasing productivity by conservation agriculture. Journal of Soil and Water Conservation. 70(3): 55A-62A. http://doi:10.2489/jswc.70.3.55A

36. Law, E. P.; Wayman, S.; Pelzer, C. J.; Culman, S. W.; Gómez, M. I.; DiTommaso, A.; Ryan, M. R. 2022. MultiCriteria assessment of the economic and environmental sustainability characteristics of intermediate wheatgrass grown as a dual-purpose grain and forage crop. Sustainability. 14(6): 3548. http://dx.doi.org/10.3390/su14063548

37. Locatelli, A.; Gutierrez, L.; Picasso Risso, V. D. 2021. Vernalization requirements of Kernza intermediate wheatgrass. Crop Science. 62(1): 524-535 pp. https://doi.org/10.1002/csc2.20667

38. Locatelli, A.; Gutierrez, L.; Duchene, O.; Speranza, P. R.; Picasso Risso, V. D. 2022. Agronomic assessment of two populations of intermediate wheatgrass-Kernza® (Thinopyrum intermedium) in temperate South America. Grassland Research. 1(4): 262-278. https://doi.org/10.1002/glr2.12032

39. Ministerio de Agricultura, Ganadería y Pesca de la Nación. 2020. Retrieved from http://datosestimaciones.magyp.gob.ar/

40. Mirella, S.; Kassam, A.; Gutiérrez, A.; Bloise M.; Marinelli, M. 2013. Capítulo 3: Metodología de evaluación de aptitud de tierras. Bioenergía y seguridad alimentaria. Retrieved from http://www.fao.org/3/i1708s/i1708s02.pdf

41. Muckey, E. 2019. Kernza® in Southern Minnesota: Assessing local viability of intermediate wheatgrass.

42. Nguyen, H.; Nguyen, T.; Hoang, N.; Bui, D.; Vu, H.; Van, T. 2020. The application of LSE software: A new approach for land suitability evaluation in agriculture. Computers and Electronics in Agriculture. 173: 105440. https://doi.org/10.1016/j.compag.2020.105440

43. NOAA (National Oceanic and Atmospheric Administration). 2019. Retrieved from www.noaa.gov

44. Pimentel, D.; Cerasale, D.; Stanley, R. C.; Perlman, R.; Newman, E. M.; Brent, L. C.; Mullan, A.; Tai-I Chang, D. 2012. Annual vs. perennial grain production, Agriculture, Ecosystems & Environment. 161: 1-9. https://doi.org/10.1016/j.agee.2012.05.025

45. Pinto, P.; Cartoni-Casamitjana, S.; Cureton, C.; Stevens, A. W.; Stoltenberg, D. E.; Zimbric, J.; Picasso, V. D. 2022. Intercropping legumes and intermediate wheatgrass increases forage yield, nutritive value, and profitability without reducing grain yields. Front. Sustain. Food Syst. Sec. Volume 6. https://doi.org/10.3389/fsufs.2022.977841

46. Piscitelli, M.; Sfeir, A. 2004. Fisiografía detallada del partido de Azul, para el desarrollo de un planteo conservacionista de manejo de suelos. (Buenos Aires, República Argentina). Segundo Congreso de la Ciencia Cartográfica y IX Semana Nacional de Cartografía. Buenos Aires.

47. Piscitelli, M.; Varni, M.; Sfeir, A.; Ares, G. 2010. Valores de erodabilidad (factor K-USLE) para suelos representativos de la cuenca alta del arroyo Azul (partido de Azul- Buenos Aires). Rev. Fac. Agron. 109(1): 17-22.

48. Pugliese, J. Y.; Culman, S. W.; Sprunger, C. D. 2019. Harvesting forage of the perennial grain crop Kernza (Thinopyrum intermedium) increases root biomass and soil nitrogen. Plant and Soil. 437: 241-254. https://doi.org/10.1007/s11104-019-03974-6

49. QGIS.org. 2021. QGIS 3.10. Geographic Information System API Documentation. QGIS Association. Retrieved from: https://qgis.org/pyqgis/3.10/index.html

50. Rossiter, D. G.; Van Wambeke, A. R. 1995. Automated Land Evaluation System Version 4.5 User’s Manual. SCAS Teaching Series T93-2 Revision 5. Department of Soil, Crop y Atmospheric Sciences. Cornell University. Ithaca. NY.

51. Rossiter, D. G.; Van Wambeke, A. R. 1997. ALES version 4.65. Cornell University. N. Y.

52. Ryan, M. R.; Crews, T. E.; Culman, S. W.; DeHaan, L. R.; Hayes, R. C.; Jungers, J. M.; Bakker, M. G. 2018. Managing for multifunctionality in perennial grain crops. Bioscience. 68: 294-304. https: //doi.org/10.1093/biosci/biy014

53. SMN (Servicio Meteorológico Nacional). 2018. Retrieved from: https://www.smn.gob.ar

54. Tilman, D.; Balzer, C.; Hill, J.; Befort, B. L. 2011. Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences. 108: 20260-20264.

55. Travasso, M. I.; Suero, E. E. 1994. Estimación de la capacidad de almacenaje de agua en suelos del sudeste bonaerense. Boletín Técnico N° 125. INTA EEA Balcarce. 9 p.

56. Tsoraeva, E.; Bekmurzov, A.; Kozyrev, S.; Khoziev, A.; Kozyrev, A. 2020. Environmental issues of agriculture as a consequence of the intensification of the development of agricultural industry. In E3S Web of Conferences (Vol. 215). EDP Sciences.

57. Vázquez, P.; Zulaica, L.; Requesens E. 2012. Cambios en el uso del suelo rural del Partido de Azul (Provincia de Buenos aires, Argentina), durante el periodo 2002-2011. IX Jornadas Nacionales de Geografía Física. Bahía Blanca. 23-32 p.

58. Wilson, M. G.; Maggi, A. E.; Castiglioni, M. G.; Gabioud, E. A.; Sasal. M. A. 2020. Conservation of ecosystem services in Argiudolls of Argentina. Agriculture. 10(12): 649. https://doi.org/10.3390/agriculture10120649

59. Zhang, S.; Huang, G.; Zhang, Y.; Lv, X.; Wan, K.; Liang, J.; Feng, Y.; Dao, J.; Wu, S.; Zhang, L.; Yang, X.; Lian, X.; Huang, L.; Shao, L.; Zhang, J.; Qin, S.; Tao, D.; Crews, T.; Sacks, E.; Lyu, J.; Wade, L.; Hu, F. 2023. Sustained productivity and agronomic potential of perennial rice. Nat Sustain. 6: 28-38. https://doi.org/10.1038/s41893-022-00997-3

 

Supplemmentary material

https://drive.google.com/drive/folders/1O-Sc7NGpM_qOxkAXMoIH49973IwOucP-?usp=sharing

 

Data availability statement

The data that support the findings of this work are in supplemental data. Also, openly available in “Zenodo” at https://doi.org/10.5281/zenodo.6884909 and https://doi.org/10.5281/zenodo.6977505.