Revista de la Facultad de Ciencias
Agrarias. Universidad Nacional de Cuyo. Tomo 56(2). ISSN (en línea) 1853-8665.
Año 2024.
Original article
Different
scenarios in land suitability assessment for Kernza®-intermediate wheatgrass (Thinopyrum
Intermedium), a novel perennial grain crop for Argentina
Diferentes
escenarios para evaluación de la aptitud de la tierras para Kernza®-intermediate
wheatgrass (Thinopyrum Intermedium), un nuevo cultivo de granos perenne
para Argentina
Maria Leticia
Sabatte1,
Silvia Patricia
Perez3,
Marcelo Juan
Massobrio1
1Universidad
de Buenos Aires. Facultad de Agronomía. Cátedra de Manejo y Conservación de
Suelos, Av. San Martín 4453. C1417DSE. Ciudad de Buenos Aires. Argentina.
2Universidad
de La Coruña, Centro de Investigaciones Científicas Avanzadas (CICA). Grupo AQUATERRA.
As Carballeiras. s/n. Campus de Elviña 15071 A Coruña.
España.
3Universidad
de Buenos Aires. Facultad de Agronomía. Cátedra de Climatología y Fenología
Agrícolas.
Abstract
Land
degradation, climate change, soil and water contamination have led to increased
interest in sustainable agricultural practices. Most agricultural practices are
focused on growing annual crops, which require significant amounts of synthetic
fertilizers, contribute to CO2 emissions and disrupt natural biological
processes. Natural Systems Agriculture has been developed to reverse this
paradigm by imitating nature through perennial grain crops. Kernza®
intermediate wheatgrass (Thinopyrum intermedium) is a promising
perennial crop producing healthy grain for direct human consumption and forage
for livestock while providing multiple ecosystemic services. Given these
reasons, consider its cultivation in Argentina is relevant. This research aimed
to predict Kernza crop suitability in the Azul district by modeling different
climatic and soil densification scenarios. The model showed that Kernza can be
grown in Azul, and that southern areas were most suitable. This model allowed
generating information for land use planners and farmers to consider planting
in Argentina, particularly, in Azul.
Keywords: land
evaluation • climate scenarios • land degradation • perennial crops
Resumen
La degradación
del suelo, el cambio climático y la contaminación del suelo y el agua han suscitado
un mayor interés por una agricultura más sostenible. La mayoría de las
prácticas agrícolas se centran en cultivos anuales, que requieren grandes
cantidades de fertilizantes sintéticos, contribuyen a un aumento en las
emisiones de CO2 y perturban los procesos biológicos naturales. El “Natural
Systems Agriculture” se ha desarrollado con el objetivo de revertir este
paradigma mediante la imitación de la naturaleza a través de cultivos de granos
perennes. El Kernza® intermediate wheatgrass (Thinopyrum intermedium) es
un cultivo perenne muy prometedor porque produce grano para consumo humano,
forraje para el ganado y proporciona múltiples servicios ecosistémicos. Por
ello, es relevante considerar su cultivo en Argentina. El objetivo fue predecir
la aptitud de Kernza mediante la modelización de diferentes escenarios
climáticos y de densificación del suelo en el partido de Azul, Argentina. El
modelo demostró que el Kernza puede ser cultivado en Azul, siendo las zonas del
sur las más aptas. El Kernza es un cultivo muy prometedor y este modelo permitió
generar información para que los planificadores del uso de la tierra y los
agricultores consideren su plantación en Azul, y en Argentina.
Palabras claves: evaluación
de tierras • escenarios climáticos • degradación de tierras • cultivos de granos
perennes
Originales: Recepción: 30/08/2023 - Aceptación: 28/05/2024
Introduction
Land
degradation, climate change, soil and water contamination have led to increased
interest in sustainable agricultural practices (4,
23, 35, 54). Despite this, most agricultural practices are still
focused on growing annual crops, which require significant amounts of synthetic
fertilizers, labour, contribute to emissions of CO2 and disrupt
natural biological processes (2, 10).
This reduces the current and potential capacity to produce goods and services,
both qualitatively and quantitatively (19, 20, 21).
Additionally, this causes an increase in the energy necessary to produce
environmental and economic liabilities (56).
In 1980, Wes Jackson published the book New Roots for Agriculture (32) to reverse this paradigm, developing the
concept of Natural Systems Agriculture (NSA). In this perennial food-grain-producing
system, soil erosion and agrochemical contamination decrease as fossil fuel
dependency decreases (33). Its objective
was to mimic nature using perennial grain crops. Unlike annuals, perennials
improve soil structure and water retention capacity, contribute to climate
change adaptation and mitigation, and promote biodiversity and ecosystemic
functions (2, 12, 25). Additionally, they
improve rural economies by reducing external inputs (i. e., reducing
dependence on fossil fuels and agrochemicals) and labour intensity (11, 12, 44).
Kernza® is the
trade name of the intermediate wheatgrass [Thinopyrum intermedium (Host)
Barkworth and D.R. Dewey], a novel perennial grain crop recently becoming commercially
available in the USA (15, 41). Kernza´s
deep root system reduces nutrient leaching while increasing water use
efficiency and soil carbon content (10, 14, 25).
In addition, Kernza provides a grain suitable for direct human consumption,
forage for livestock, and multiple ecosystemic services for enhanced environmental
quality (12, 24, 28, 49, 52).
Territory is
used for different purposes, occasionally complementary but mostly conflicting
(i.e., they cannot be located simultaneously in the same area). For
these reasons, land-use planning plays a major role in considering exploitation
of natural resources; assessing requirements and land capacity, identifying and
resolving conflicts among competing uses and seeking long-term sustainable
solutions (19, 20, 31). Land evaluation assesses
land suitability for specific purposes, constituting an integral part of
land-use planning, providing information for decision-making by land-use
planners (19, 20, 40). Land evaluation
involves the execution and interpretation of basic studies of climate, soil, vegetation,
and any aspect regarding land-use requirements (19).
Several methodologies aid the development of land evaluation systems, including
modeling, such as expert systems. Models allow predicting outcomes under real
conditions and generate new hypothetical outcomes in scenarios of change, such
as different climate or soil densification scenarios. These hypothetical
outcomes facilitate management and adaptation measures to future changes (31, 42, 50, 51).
While perennial
grain crops are not widely cultivated worldwide (8,
36) the various agro-ecological benefits they potentially provide
make them strong candidates for cultivation in Argentina. This study aimed to
predict Kernza crop suitability in Azul district by modelling different
climatic and soil densification scenarios in Azul district, Argentina.
Materials
and methods
Study
area
Azul district is
located in the centre of Buenos Aires province, Argentina (36°14’ S - 37°27’ S
and 59°8’ W - 60°10’ W) in the Pampa region, with an area of 6,551 km2
(figure 1) and 70 545 inhabitants. It is divided into two
large areas: southern Pampa in the south and flooding Pampa in the north (46).
(Landsat/Copernicus image. ©Google, 2022).
Figure 1. Location
of Azul district in Argentina.
Figura 1. Ubicación
del partido de Azul en la Argentina.
According to the
Köppen classification (34), Azul has a
humid temperate climate (Cfb) with oceanic influence, hot summers, and
precipitations evenly distributed throughout the year (7, 43, 53). Mean annual rainfall is 921 mm
(1931-2017 series). Minimum annual rainfall recorded in 1935 was 590 mm, and
maximum annual rainfall in 2012 was 1449 mm. In addition, different
precipitation periodicities were observed in intervals of 12 and 2.5 years (6, 53). Azul mean annual temperature is 14, 2°C
(1997-2018 series). January is the hottest month with an average temperature of
21, 8°C, while August is the coldest with an average of 7 °C. Mean annual
potential evapotranspiration is 752 mm. December, January and February present
the higher atmospheric demand.
Soils are
Argiudolls, Hapludolls, Natraquolls and Natraqualfs (30,
46, 47). Land uses are agriculture, livestock, and crop-livestock
systems (57). Soybean (Glycine max),
corn (Zea mays), wheat (Triticum aestivum), barley (Hordeum
vulgare) and sunflower (Helianthus annuus) are the major crops.
Livestock plays an important role in the district, especially in the Pampa
Deprimida area (39).
Kernza
crop suitability modelling
The ALES
(Automated Land Evaluation System) v4.65e software (50,
51) was modelled under the FAO Land Evaluation Framework (19, 20, 21). Model inputs were Kernza
requirements (table 1), soil characteristics (table 2), and climate characteristics (table 3).
Table
1. Kernza land use requirements.
Tabla 1. Requerimientos
del uso de la tierra para Kernza.

Most references concerning the northern hemisphere
have been adapted for the southern hemisphere. * Andrés Locatelli (Universidad de
la República, Uruguay), personal communication, 2020.
La bibliografía consultada corresponde al hemisferio
norte y fue adaptada al hemisferio sur. * Andrés Locatelli (Universidad de la República,
Uruguay), comunicación personal, 2020.
Table
2. Selected soil characteristics, classes
and ranks.
Tabla 2. Características
de los suelos seleccionadas, sus clases y rangos.

Table
3. Climate characteristics selected,
classes and ranks.
Tabla 3. Características
del clima seleccionadas, sus clases y rangos.

Suitability was
determined by comparing Kernza crop requirements with land qualities (table 4) selected through decision trees (Supplemental
data 2).
Table
4. Simulation of different precipitation
scenarios. Different precipitation probabilities are observed for each period
and each soil densification.
Tabla 4. Simulación
de los diferentes escenarios de precipitación para las diferentes
probabilidades de ocurrencia en cada periodo del cultivo y densificación del
suelo.

The model was
based on Kernza land utilization involving grain and forage production without
irrigation for four years. Farming techniques include direct drilling,
fertilization with nitrogen and phosphorous, phytosanitary applications and
mechanized harvesting. The crop is seeded in March, with grain harvesting in
January, followed by two forage harvests, one after grain harvest and another
in April or May.
Kernza
crop requirements
Edaphoclimatic
characteristics (table 2 and table 3)
were selected, and different classes and ranks were defined (Locatelli 2020*,
2, 9, 14, 16, 22, 28, 36, 41, 48). Soil data were obtained from soil profiles
of the 1:50000 soil maps (13, 30).
Climate data were obtained from the climate analysis by Cassani
(2020) and SMN (2018). Available water content
up to 1 meter was indirectly obtained with the Travasso
& Suero model (1994), developed and validated for the southern Pampa
region.
Decision trees
were assembled according to edaphoclimatic characteristics and logical criteria
based on expert knowledge determining land qualities (31, 40, 42). Seven land qualities were determined
for model development (Supplemental data 2): Oxygen
availability (Disp_O), Root depth (Exp_Rad), Nutrient availability (Disp_Nut),
Exchangeable sodium percentage (%PSI), Water logging (Aneg) and Available water
(Disp_Agua). Land qualities were assessed using four classes according to the FAO framework (1976, 1985, 2007), from the lowest (1) to the highest level of use limitation (4).
Climate
and soil densification scenarios
Scenarios were
proposed according to cumulative probabilities of precipitation for P20%, P50%
and P80% (table 4). These scenarios were calculated with
data obtained from Cassani (2020) and the SMN (2018).
Considering that
past or current land use can affect planning and change crop suitability,
scenarios of maximum and minimum soil densification were simulated for each
cumulative precipitation setting. As physical degradation is the major soil
degradation in Argentina (1, 5, 58), a
theoretical maximum bulk density was calculated according to Duval et al. (2015) equation [1]
as maximum soil densification. Minimum soil densification was determined as a
bulk density of 1.2 g/cm³ (47) (Supplemental data 1), simulating the occurrence of soil
densifications, which decrease rainfall infiltration and percolation. On
average, this led to a 20% reduction in water availability, generating
different starting points for the Kernza suitability model for available water
(table 4). Thus, lands with high soil densification are
physically degraded, so the available water is lower. Also, in case of excess
precipitation, drainage capacity is limited.
Kernza
suitability assessment was conducted by comparing Kernza requirements vs. land qualities. Kernza suitability was evaluated by considering
the maximum limitation method (31) for
each decision tree created (Supplemental data 2). We
have expanded the four FAO categories into nine subcategories (figure
2; table 5) indicating suitability of each soil map
unit.
Figure 2. Land
suitability for Kernza in minimum soil densification scenario for P20% (A),
P50% (C) and P80% (E) scenarios, and in maximum soil densification scenario for
P20% (B), P50% (D) and P80% (F).
Figura 2. Aptitud
de la tierra para Kernza en el escenario de mínima densificación del suelo para
los escenarios P20% (A), P50% (C) y P80% (E), y para el escenario de máxima
densificación del suelo para los escenarios P20% (B), P50% (D) y P80% (F).
Table 5. Occupied
land suitability for Kernza in minimum soil densification scenario for P20%
(A), P50% (C) and P80% (E) climate scenarios (km2).
Table 5. Superficie
ocupada por las distintas aptitudes para Kernza en el escenario de mínima
densificación del suelo y P20% (A), P50% (C) y P80% (E) (km2).

The assessment
focuses on identifying potential limitations and risks associated with the
different scenarios. In the maximum soil densification scenario, current
unsuitable land can be reverted and turned into suitable land. This is not the
case for permanently unsuitable land (figure 2, table 6). Results were mapped using QGIS v3.10.8-A Coruña (49).
Table
6. Occupied land suitability for Kernza in
maximum soil densification scenario for P20% (B), P50% (D) and P80% (F) climate
scenarios in Km2.
Table 6. Superficie
ocupada por las distintas aptitudes para Kernza en el escenario de máxima
densificación del suelo y P20% (B), P50% (D) y P80% (F) en Km2.

Soil map units
identified in the 1:50000 maps (13, 30)
were used as land units for this study. A total of 134 mapping units were
identified, composed of 90 soil series and their phases (Supplemental
data 1).
In the minimum
soil densification scenario, most lands in northern Azul were classified as
unsuitable considering all precipitation probabilities. By contrast, most land
in south Azul was classified as suitable in all precipitation probabilities (figure 2A, 2C and 2E). In P20%, suitable lands were classified
under low to very low suitabilities (figure 2A). On the other
hand, in P50% and P80% suitable land was mostly classified under moderately
high to very high suitabilities (figure 2C and 2E). In the
P20% scenario, no area was occupied by land with high suitability, less high
suitability, and moderately high suitability. A considerably small area was
occupied by the moderately low and low suitability classes. The remaining area
was occupied by very low to unsuitable classes (table 5).
In the P50% and P80% scenarios, classes with high and less high suitability
occupied a significant area, with equal occupancy in both scenarios. In the
P50% scenario, the class with moderately high suitability obtained a high
occupation area concerning the P80% scenario, where it was practically
insignificant. A shift was observed in the area occupied in the P80% scenario
towards the class with low suitability in relation to the P50% scenario. In
contrast, the class presenting very low suitability was higher in the P50%
scenario than in the P80% scenario (table 5).
Regarding the
maximum soil densification scenario, in P20% all land was classified as
unsuitable. Most northern lands were classified as permanently unsuitable. In
the south, most of the lands were currently unsuitable (figure
2B). In P50% and P80%, most northern lands were classified as unsuitable.
In contrast, most lands in south Azul were classified as suitable. Suitable
lands were classified under very high to moderately low suitabilities. In
contrast to P50%, P80% was shown as currently unsuitable land (figure
2D and figure 2F).
The largest area
in the conditionally unsuitable class was in the P20% scenario, followed by the
P80%. This first class was not observed in the P50% scenario. In the P50% and
P80% scenarios, the highly suitable and less highly suitable classes occupied a
significant area, with equal occupancy in both scenarios. In the P50% scenario,
the moderately high suitable class obtained a high area of occupation in
relation to the P80% scenario, where it was practically insignificant. A shift
in the area occupied towards the conditionally unsuitable class was shown in
the P80% scenario in relation to the P50% scenario. In contras clases with low
to very low suitability were higher in the P50% scenario than in the P80% scenario
(table 6).
Discussion
Precipitation
probability strongly influenced results for all scenarios, notably affecting
available water. Oxygen availability and exchangeable sodium percentage played
a significant role given the very high levels of exchangeable sodium (%PSI) and
poor drainage. As a result, most of the land in Azul was unsuitable for Kernza.
However, suitable land for Kernza could be found in the Southern region, with
favourable cropping conditions. Irigoin (2011) in
the Pampa Arenosa region, Argentina, also documented these results, linked to
the different climatic scenarios and water availability. In both Pampa Serrana
and Pampa Arenosa climate fluctuations related to the ENZO (El Niño Southern
Oscillation) phenomenon, are recurrent every 2-3 years (6, 34), making ENZO an important factor in land
use planning for Argentina.
Maximun soil
densification resulted agreed with Agostini et al. (2018)
for southern Pampa. Furthermore, the incorporation of the currently unsuitable
class was appropriate for the maximum soil densification scenario, allowing the
identification of temporarily unsuitable land for Kernza. Soil densification
can reversibly modify soil water dynamics, and currently unsuitable land can
become suitable for Kernza when densification is removed. In the P20% maximum
densification scenario, as water infiltration and percolation were restricted
due to densification, annual available water was 321 mm, resulting in all land
being classified as unsuitable. A quite different situation was shown in the
P20% minimum soil densification scenario with 401 mm, with lands classified as
suitable and unsuitable. The maximum soil densification for P80% scenario
showed different land classification vs. P50%. Suitable lands in P50%
became unsuitable in P80%. At higher precipitation, excess water due to soil
densification led to higher waterlogging and lower soil oxygen availability. In
Azul, suitable areas for Kernza coincide with historical wheat areas (29, 57).
However,
according to Law et al. (2022) the
environmental benefits do have trade-offs with the economic performance of
Kernza, as low grain yields would require substantial price premiums to produce
net returns equivalent to comparable annual crops. Kernza’s current grain yield
is relatively low when contrasted with annual wheat, i.e., up to ∼1,660
kg ha-1 in experimental fields (26, 36),
but breeders expect IWG to achieve comparable yields soon (3, 15). The possibility to harvest forage twice a
year provides an additional source of income (24,
45). Furthermore, Kernza’s deep root system can explore deep soil
water, decreasing drought stress (9) due
to climate change and the ENZO. Additionally, considering annual crops under
fertilization (14) nitrogen leaching
decreased while increasing nutrient cycling, and improving fertilizing
efficiency, with a consequent reduction in costs. Moreover, bearing in mind
that decarbonization is being discussed worldwide (27),
carbon sequestration by roots and a lower dependence on fossil fuels for
production (12) could position Kernza as
the ideal crop. The crop’s smaller carbon footprint could be used for carbon
credits bringing in additional revenue through inclusion in programs such as
the Ecosystem Services Market Consortium (2023). All
these ecosystemic services must be considered in the economic equation.
After the recent
commercial release of perennial rice in China, shifting from annuals to
perennials seems more possible than ever (59).
Given all the ecosystemic services provided, Kernza constitutes a very
promising crop to consider in the Pampa region, Argentina with temperate
climates and wild winters like Uruguay (38).
Nextly, Kernza is to be field-tested and promoted among farmers in Azul and the
rest of Argentina.
Conclusions
The land
suitability model showed that Kernza can be grown in Azul and that southern areas
are most suitable. These lands were mostly Argiudolls and Hapludolls, generally
deep, with loamy textures, high organic matter content and granular structures
in topsoil, and blocky structures in subsoil. They are well to moderately-well
drained with high available water. These soil characteristics satisfy Kernza
requirements, in concordance with historical wheat areas in Azul.
In addition, the
different precipitation scenarios: P20%, P50% and P80%, allowed for determining
land suitability. Different precipitation probabilities affect modelled performance
of land units by increasing water supply and availability, while different soil
densification scenarios modified available water and waterlogging. The maximum suitability
expression was in P50% scenario, an average occurrence climatic scenario for both
soil densification scenarios.
Given all the
ecosystemic services provided, Kernza constitutes a very promising crop for
land use planners and farmers in Azul and Argentina.
Acknowledgments
This work was
supported by University of Buenos Aires, projects UBACyT Grant/Award Number:
Res. 20020130100690BA. Also, by the INDITEX Group and the University of La
Coruña, “InMOTION Program, axudas para estadías predoutorais INDITEX-UDC 2020”.
Special thanks to Andres Locatelli Fagúndez from University of Republic,
Uruguay and Tim Crews from The Land Institute for critical reviews; and Laura
van der Pol from The Land Institute for her support.
1. Agostini, M.
A.; Dominguez, G. F.; Studdert, G. A.; Tourn, S. N. 2018. Impacto de diferentes
prácticas de manejo sobre algunas propiedades físicas de suelos del sudeste
bonaerense. In Perla Imbellone, Carina Álvarez (Eds.). Compactaciones naturales
y antrópicas en suelos argentinos. Asociación Argentina de la Ciencia del
Suelo: 495-512.
2. Bajgain, P.;
Zhang. X.; Jungers, J. M.; DeHaan, L. R.; Heim, B.; Sheaffer, C. C.; Wyse, D.;
Anderson, J. A. 2020. ‘MN-Clearwater’, the first food-grade intermediate
wheatgrass (Kernza perennial grain) cultivar. J. Plant Regist. 14: 288-297.
https://doi.org/10.1002/plr2.20042
3. Batello, C.;
Wade, L.; Cox, S.; Pogna, N.; Bozzini, A.; Choptiany, J. 2013. Perennial crops
for food security: Proceedings of the FAO Expert Workshop. Rome. FAO.
4. Campbell, B.
M; Beare, D. J.; Bennett, E. M.; Hall-Spencer, J. M.; Ingram, J. S. I.;
Jaramillo, F.; Ortiz, R.; Ramankutty, N.; Sayer, J. A.; Shindell, D. 2017.
Agriculture production as a major driver of the Earth system exceeding
planetary boundaries. Ecology and Society. 22(4): 8.
https://doi.org/10.5751/ES-09595-220408
5. Casas, R. R.
2017. La degradación del suelo en la Argentina. En: Manejo y conservación de
suelos: con especial énfasis en situaciones argentinas. In: Colaborador:
Vázquez, M. E. (col). AACS (ed). Asociación Argentina Ciencia del Suelo. 386 p.
6. Cassani, M.
T. 2020. La mesofauna edáfica como indicadora de la estabilidad del ecosistema:
su efecto sobre la tasa de descomposición de rastrojos. Magister thesis.
Universidad de Buenos Aires. Retrieved from:
http://ri.agro.uba.ar/cgi-bin/library.cgi?a=d&c=tesis&d=2020cassanimarianotomas
7. Cassani, M.
T.; Sabatté, M. L.; Rubín, M. R.; Sfeir, A. J.; Massobrio, M. J. 2021. Litter
decomposition by soil fauna: effect of land use in agroecosystems. Heliyon.
7(10). https://doi.org/10.1016/j.heliyon.2021.e08127
8. Chapman, E.
A.; Thomsen, H. C.; Tulloch, S.; Correia, P. M. P.; Luo, G.; Najafi, J.;
DeHaan, L. R.; Crews, T. E.; Olsson, L.; Lundquist, P. O.; Westerbergh, A.;
Pedas, P. R.; Knudsen, S.; Palmgren, M. 2022. Perennials as future grain crops:
Opportunities and challenges. Frontiers in Plant Science. 13: 898769.
https://doi.org/10.3389/fpls.2022.898769
9. Clement, C.;
Sleiderink, J.; Svane, S. F.; Smith, A.; Diamantopoulos, E.; Desbrøll, D.;
Thorup-Kristensen, K. 2022. Comparing the deep root growth and water uptake of
intermediate wheatgrass (Kernza®) to alfalfa. Plant Soil. 472: 369-390.
https://doi.org/10.1007/s11104-021-05248-6
10. Cox, T. S.;
Van Tassel, D. L.; Cox, C. M.; DeHaan, L. R. 2010. Progress in breeding
perennial grains. Crop Pasture Science. 61: 513-521.
https://doi.org/10.1071/CP09201
11. Crews, T.
E.; Rumsey, B. E. 2017. What agriculture can learn from native ecosystems in
building soil organic matter: a review. Sustainability. 9(4): 1-18.
12. Crews, T.;
Carton, W.; Olsson, L. 2018. Is the future of agriculture perennial?
Imperatives and opportunities to reinvent agriculture by shifting from annual
monocultures to perennial polycultures. Global Sustainability. 1(E11).
https://doi:10.1017/sus.2018.11
13. Cruzate, G.
A.; Pizarro, M. J.; Banchero, S.; Mercuri, P. 2010. Infraestructura de datos
espaciales del INTA-GeoINTA. V Jornadas Idera. Santa Fe.
14. Culman, S.
W.; Snapp, S. S.; Ollenburger, M. Basso, B.; DeHaan, L. R. 2013. Soil and water
quality rapidly responds to the perennial grain Kernza wheatgrass. Agronomy
Journal. 105: 735-744. https://doi.org/10.2134/agronj2012.0273
15. DeHaan, L.;
Wang, S.; Larson, S.; Kantarski, T.; Zhang, X.; Cattani, D. 2014. Current
efforts to develop perennial wheat and domesticate Thinopyrum intermedium as
a perennial grain. In C. Batello, L. Wade, S. Cox, N. Pogna, A. Bozzini, &
J. Choptiany (Eds.). Perennial crops for food security: Proceedings of the FAO
expert workshop. FAO. p. 72-89.
16. de Oliveira,
G.; Brunsell, N. A.; Sutherlin, C. E.; Crews, T. E.; DeHaan, L. R. 2018.
Energy, water and carbon exchange over a perennial Kernza wheatgrass crop.
Agricultural and Forest Meteorology. 249: 120-137.
https://doi.org/10.1016/j.agrformet.2017.11.022
17. Duval, M.
E.; Galantini, J. A.; Martínez, J. M.; López, F. M.; Wall, L. G. 2015.
Evaluación de la calidad física de los suelos de la región pampeana: efecto de
las prácticas de manejo. Ciencias Agronómicas. Revista XXV. 33. Año 15.
18. ESMC
(Ecosystem Services Market Consortium). 2023. Retrieved from
https://ecosystemservicesmarket.org/
19. FAO. 1976. A
framework for land evaluation. FAO Soils Bulletin 32.
20. FAO. 1985.
Guidelines: Land evaluation for irrigated agriculture. FAO Soils Bulletin 55.
21. FAO. 2007.
Land evaluation: Towards a revised framework. FAO discussion papers.
22. Fernández,
C. W.; Ehlke, N.; Sheaffer, C. C.; Jungers, J. M. 2020. Effects of nitrogen
fertilization and planting density on intermediate wheatgrass yield. Agron. J.
112: 4159-4170.
23. Foley, J.
A.; DeFries, R.; Asner, G. P.; Barford, C.; Bonan, G.; Carpenter, S. R.;
Chapin, F. S.; Coe, M. T.; Daily G. C.; Gibbs H. K. 2005. Global consequences
of land use. Science. 309(5734): 570-574.
http://dx.doi.org/10.1126/science.1111772
24. Franco, J.
G.; Berti, M. T.; Grabber, J. H.; Hendrickson, J. R.; Nieman, C. C.; Pinto, P.;
Van Tassel, D.; Picasso, V. D. 2021. Ecological intensification of food
production by integrating forages. Agronomy. 11: 1-26.
https://doi:10.3390/agronomy11122580
25. Glover, J.
D.; Culman, S. W.; DuPont, S. T.; Broussard, W.; Young, L.; Mangan, M. E.; Mai,
J. G.; Crews, T. E.; DeHaan, L. R.; Buckley, D. H.; Ferris, H.; Turner, R. E.;
Reynolds, H. L.; Wyse, D. L. 2010. Harvested perennial grasslands provide
ecological benchmarks for agricultural sustainability. Agriculture Ecosystems
and Environments. 137: 3-12. https://doi.org/10.1016/j.agee.2009.11.001
26.
Guevara-Ochoa, C.; Lara, B.; Vives, L.; Zimmermann, E.; Gandini, M. 2018. A
methodology for the characterization of land use using medium-resolution
spatial images. Revista Chapingo Serie Ciencias Forestales y del Ambiente.
24(2): 207-218. https://doi.org/10.5154/r.rchscfa.2017.10.061
27. Hanna, R.;
Victor, D. G. 2021. Marking the decarbonization revolutions. Nature Energy.
6(8): 568-571. https://doi.org/10.1038/s41560-021-00854-1
28. Hunter, M.
C.; Sheaffer, C. C.; Culman, S. W.; Jungers, J. M. 2020. Effects of defoliation
and row spacing on intermediate wheatgrass I: grain production. Agron. J. 112:
1748-1763.
29. Imbellone,
P. A.; Giménez, J. E.; Panigatti, J. L. 2010. Suelos de la Región Pampeana:
Procesos de formación. Ediciones INTA. Buenos Aires. 320 p.
30. INTA. 2005.
Carta de Suelos de la República Argentina. Instituto Nacional de Tecnología
Agropecuaria de Argentina. Argentina. Retrieved from:
http://anterior.inta.gov.ar/suelos/cartas/index.htm el día 06/10/2020.
31. Irigoin, J.
2011. Sistemas de evaluación de tierras y elaboración de modelos de aptitud de
uso agrícola, para distintos escenarios climáticos, en un sector de la
subregión pampa arenosa (Prov. de Bs. As., Argentina). Magister thesis.
University of Buenos Aires. Retrieved from:
http://ri.agro.uba.ar/files/download/tesis/maestria/2011irigoinjulieta.pdf
32. Jackson, W.
1980. New roots for agriculture. University of Nebraska Press.
33. Jackson, W.
2002. Natural systems agriculture: A truly radical alternative. Agriculture,
Ecosystems & Environment. 88(2): 111-117. https://doi.org/10.1016/s0167-8809(01)00247-x
34. Kottek, M.;
Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. 2006. World Map of the
Köppen-Geiger climate classification updated. Meteorologische Zeitschrift.
15(3): 259-263.
35. Lal, R.
2015. Sequestering carbon and increasing productivity by conservation
agriculture. Journal of Soil and Water Conservation. 70(3): 55A-62A.
http://doi:10.2489/jswc.70.3.55A
36. Law, E. P.;
Wayman, S.; Pelzer, C. J.; Culman, S. W.; Gómez, M. I.; DiTommaso, A.; Ryan, M.
R. 2022. MultiCriteria assessment of the economic and environmental
sustainability characteristics of intermediate wheatgrass grown as a
dual-purpose grain and forage crop. Sustainability. 14(6): 3548.
http://dx.doi.org/10.3390/su14063548
37. Locatelli,
A.; Gutierrez, L.; Picasso Risso, V. D. 2021. Vernalization requirements of
Kernza intermediate wheatgrass. Crop Science. 62(1): 524-535 pp.
https://doi.org/10.1002/csc2.20667
38. Locatelli,
A.; Gutierrez, L.; Duchene, O.; Speranza, P. R.; Picasso Risso, V. D. 2022.
Agronomic assessment of two populations of intermediate wheatgrass-Kernza® (Thinopyrum
intermedium) in temperate South America. Grassland Research. 1(4): 262-278.
https://doi.org/10.1002/glr2.12032
39. Ministerio
de Agricultura, Ganadería y Pesca de la Nación. 2020. Retrieved from
http://datosestimaciones.magyp.gob.ar/
40. Mirella, S.;
Kassam, A.; Gutiérrez, A.; Bloise M.; Marinelli, M. 2013. Capítulo 3:
Metodología de evaluación de aptitud de tierras. Bioenergía y seguridad
alimentaria. Retrieved from http://www.fao.org/3/i1708s/i1708s02.pdf
41. Muckey, E.
2019. Kernza® in Southern Minnesota: Assessing local viability of intermediate
wheatgrass.
42. Nguyen, H.;
Nguyen, T.; Hoang, N.; Bui, D.; Vu, H.; Van, T. 2020. The application of LSE
software: A new approach for land suitability evaluation in agriculture.
Computers and Electronics in Agriculture. 173: 105440.
https://doi.org/10.1016/j.compag.2020.105440
43. NOAA
(National Oceanic and Atmospheric Administration). 2019. Retrieved from
www.noaa.gov
44. Pimentel,
D.; Cerasale, D.; Stanley, R. C.; Perlman, R.; Newman, E. M.; Brent, L. C.;
Mullan, A.; Tai-I Chang, D. 2012. Annual vs. perennial
grain production, Agriculture, Ecosystems & Environment. 161: 1-9.
https://doi.org/10.1016/j.agee.2012.05.025
45. Pinto, P.;
Cartoni-Casamitjana, S.; Cureton, C.; Stevens, A. W.; Stoltenberg, D. E.;
Zimbric, J.; Picasso, V. D. 2022. Intercropping legumes and intermediate
wheatgrass increases forage yield, nutritive value, and profitability without
reducing grain yields. Front. Sustain. Food Syst. Sec. Volume 6.
https://doi.org/10.3389/fsufs.2022.977841
46. Piscitelli,
M.; Sfeir, A. 2004. Fisiografía detallada del partido de Azul, para el
desarrollo de un planteo conservacionista de manejo de suelos. (Buenos Aires,
República Argentina). Segundo Congreso de la Ciencia Cartográfica y IX Semana
Nacional de Cartografía. Buenos Aires.
47. Piscitelli,
M.; Varni, M.; Sfeir, A.; Ares, G. 2010. Valores de erodabilidad (factor
K-USLE) para suelos representativos de la cuenca alta del arroyo Azul (partido
de Azul- Buenos Aires). Rev. Fac. Agron. 109(1): 17-22.
48. Pugliese, J.
Y.; Culman, S. W.; Sprunger, C. D. 2019. Harvesting forage of the perennial
grain crop Kernza (Thinopyrum intermedium) increases root biomass and
soil nitrogen. Plant and Soil. 437: 241-254.
https://doi.org/10.1007/s11104-019-03974-6
49. QGIS.org.
2021. QGIS 3.10. Geographic Information System API Documentation. QGIS
Association. Retrieved from: https://qgis.org/pyqgis/3.10/index.html
50. Rossiter, D.
G.; Van Wambeke, A. R. 1995. Automated Land Evaluation System Version 4.5
User’s Manual. SCAS Teaching Series T93-2 Revision 5. Department of Soil, Crop
y Atmospheric Sciences. Cornell University. Ithaca. NY.
51. Rossiter, D.
G.; Van Wambeke, A. R. 1997. ALES version 4.65. Cornell University. N. Y.
52. Ryan, M. R.;
Crews, T. E.; Culman, S. W.; DeHaan, L. R.; Hayes, R. C.; Jungers, J. M.;
Bakker, M. G. 2018. Managing for multifunctionality in perennial grain crops.
Bioscience. 68: 294-304. https:
//doi.org/10.1093/biosci/biy014
53. SMN (Servicio
Meteorológico Nacional). 2018. Retrieved from: https://www.smn.gob.ar
54. Tilman, D.;
Balzer, C.; Hill, J.; Befort, B. L. 2011. Global food demand and the
sustainable intensification of agriculture. Proceedings of the National Academy
of Sciences. 108: 20260-20264.
55. Travasso, M.
I.; Suero, E. E. 1994. Estimación de la capacidad de almacenaje de agua en
suelos del sudeste bonaerense. Boletín Técnico N° 125. INTA EEA Balcarce. 9 p.
56. Tsoraeva,
E.; Bekmurzov, A.; Kozyrev, S.; Khoziev, A.; Kozyrev, A. 2020. Environmental
issues of agriculture as a consequence of the intensification of the
development of agricultural industry. In E3S Web of Conferences (Vol. 215). EDP
Sciences.
57. Vázquez, P.;
Zulaica, L.; Requesens E. 2012. Cambios en el uso del suelo rural del Partido
de Azul (Provincia de Buenos aires, Argentina), durante el periodo 2002-2011.
IX Jornadas Nacionales de Geografía Física. Bahía Blanca. 23-32 p.
58. Wilson, M.
G.; Maggi, A. E.; Castiglioni, M. G.; Gabioud, E. A.; Sasal. M. A. 2020.
Conservation of ecosystem services in Argiudolls of Argentina. Agriculture.
10(12): 649. https://doi.org/10.3390/agriculture10120649
59. Zhang, S.;
Huang, G.; Zhang, Y.; Lv, X.; Wan, K.; Liang, J.; Feng, Y.; Dao, J.; Wu, S.;
Zhang, L.; Yang, X.; Lian, X.; Huang, L.; Shao, L.; Zhang, J.; Qin, S.; Tao,
D.; Crews, T.; Sacks, E.; Lyu, J.; Wade, L.; Hu, F. 2023. Sustained
productivity and agronomic potential of perennial rice. Nat Sustain. 6: 28-38.
https://doi.org/10.1038/s41893-022-00997-3
https://drive.google.com/drive/folders/1O-Sc7NGpM_qOxkAXMoIH49973IwOucP-?usp=sharing
Data
availability statement
The data that
support the findings of this work are in supplemental data. Also, openly
available in “Zenodo” at https://doi.org/10.5281/zenodo.6884909 and
https://doi.org/10.5281/zenodo.6977505.