Revista de la Facultad de Ciencias
Agrarias. Universidad Nacional de Cuyo. Tomo 56(2). ISSN (en línea) 1853-8665.
Año 2024.
Review
Trends and research
hotspots in principal genera of Platypodinae-fungi association: a bibliometric
analysis on Euplatypus, Megaplatypus and Platypus (Coleoptera:
Platypodinae)
Tendencias
y principales áreas de investigación en los principales géneros de Platypodinae-hongos
asociados, un análisis bibliométrico sobre Euplatypus, Megaplatypus y
Platypus (Coleoptera: Platypodinae)
Gabriela Attonaty1,
Esteban Ceriani Nakamurakare1, 2*
1Universidad de Buenos Aires. Facultad de Ciencias Exactas y
Naturales. Departamento de Biodiversidad y Biología Experimental. Laboratorio
de Micología y Fitopatología. Intendente Güiraldes 2160. C1428 EHA, Ciudad
Autónoma de Buenos Aires. Argentina.
2Consejo Nacional de Investigaciones Científicas y Técnicas
(CONICET). Instituto de Micología y Botánica (InMiBo-UBA-CONICET). C1428 EHA.
Ciudad Autónoma de Buenos Aires. Argentina.
*cerianinaka@gmail.com
Abstract
Ambrosia beetles of
the subfamily Platypodinae are symbiotically associated with fungi, which
provide them with food and benefit their establishment and growth. In the
present study, our interest centers on the principal genera of Platypodinae: Euplatypus,
Megaplatypus and Platypus, the most relevant symbionts being
species of Fusarium, Graphium and Raffaelea. The objective
of this work is to update the description of fungal associations on those
species of interest to the scientific community, ONGs and funding institutions.
An exhaustive search was performed to cover all scientific studies from 1900 to
2024 on the co-occurrence or relationship between members of the
above-mentioned Platypodinae and fungi. Records of insect and fungal species,
host plants and geographic locations were collected. A bibliometric analysis
was conducted to characterize the overall status, general trends and current
research hotspots of fungi associated with these ambrosia beetles. Eighty
percent of the publications retrieved explored the association of Platypus spp.
with different fungi. Raffaelea was the fungal genus showing the highest
number of records and worldwide distribution. Five countries from four
continents currently lead research on these associations. However, greater
insights into these interactions would improve decision-making on managing
these pests.
Keywords: ambrosia, beetles, Fusarium,
Graphium, Raffaelea, Google Scholar, Scopus, Web of Science
Resumen
Los escarabajos de
ambrosía de la subfamilia Platypodinae están asociados simbióticamente con
hongos que les proporcionan alimento y benefician su establecimiento y
crecimiento. En el presente trabajo, los principales géneros de interés de
Platypodinae son Euplatypus, Megaplatypus y Platypus, y
los simbiontes más relevantes son especies de Fusarium, Graphium y
Raffaelea. El objetivo del trabajo es ofrecer una síntesis actualizada
de la información sobre esas especies de interés, para la comunidad científica,
las ONG e instituciones financiadoras. Se realizó una búsqueda exhaustiva de
todos los estudios científicos desde 1900 hasta 2024 con datos sobre
coocurrencia o relaciones entre los Platypodinae antes mencionados y hongos,
recogiéndose los registros de especies de insectos y hongos, planta hospedante
y localización geográfica. Se realizó un análisis bibliométrico para caracterizar
el estado global, las tendencias generales y las áreas de investigación con
mayor incidencia sobre hongos asociados a estos escarabajos de ambrosía. El
ochenta por ciento de las publicaciones recuperadas exploran la asociación de Platypus
spp. con diferentes hongos. Raffaelea fue el género fúngico con
mayor número de registros, con distribución mundial. Cinco países, de cuatro
continentes, lideran actualmente la investigación de estas asociaciones. Sin
embargo, un mayor conocimiento de estas interacciones ayudaría en la toma de
decisiones sobre la gestión de estas plagas.
Palabras clave: ambrosia,
escarabajos, Fusarium, Graphium, Raffaelea, Google
Scholar, Scopus, Web of Science
Originales: Recepción: 13/09/2023
- Aceptación: 24/07/2024
Introduction
Platypodinae (pinhole borers) is a subfamily of wood-boring
beetles that belong to the Curculionidae family. Most species of this subfamily
are members of the artificial group named ambrosia beetles, which form a
mutualistic symbiosis with ambrosia fungi, in which fungi are vectored and
inoculated directly into wood by the beetle. Timber quality is affected by the
staining produced by ambrosia fungi and gallery systems that extend deep into
wood (10). Ambrosia beetles feed on fungi
growing on sapwood, which provide nutrients and suitable moisture for the
development of larvae and pupae (8).
Several
Platypodinae species are of particular importance to forest health and have a
significant economic impact on forest and fruit tree production in tropical and
subtropical countries. Polyphagous species of Euplatypus S.L. Wood (Euplatypus
parallelus Bright & Skidmore), Megaplatypus S.L. Wood (Megaplatypus
mutatus Chapuis) and Platypus J.F.W. Herbst (Platypus cylindrus J.C.
Fabricius, Platypus koryoensis Wood & Bright and Platypus
quercivorus Murayama) cause high economic loss after attacking forest or
fruit plantations (9, 29, 30, 31, 34, 95).
Examples of fungi
found in association with platypodine beetles include Fusarium spp. (17, 18), whose functional roles as a source of
nutrition or essential compounds for beetle development have been proposed (15, 33, 68). Species of Graphium Corda
(Microascales) have been related to Platypodinae (17,
65). For example, Graphium basitruncatum (Matsush.) Seifert
& G. Okada has been linked with M. mutatus males and galleries (18), suggesting that this fungus is a regular
associate rather than a primary nutritional ambrosia fungus (17, 19). The synnematous anamorphs of Ophiostoma
Syd. & P. Syd. and Pseudallescheria Negr. & I. Fisch., among
other genera, which can be dominant in bark beetle galleries, were often
classified as Graphium in the past (21).
Raffaelea Arx & Hennebert
(Ophiostomatales) is another important associate of Platypodinae. This genus is
one of the most widespread ambrosial mutualist genera. The genus has colonized
many independent beetle groups throughout its evolution (24). Raffaelea species constitute three
clades: Raffaelea sensu stricto, Raffaelea lauricola complex and Raffaelea
sulphurea complex. Several of these species belong to the genus Harringtonia
(22). Raffaelea lauricola T.C.
Harr., Fraedrich & Aghayeva, the etiological agent of laurel wilt, is
associated with several ambrosia beetles and attacks lauraceous species (38, 75). Within the R. sulphurea complex, Raffaelea
quercivora Kubono & Shin. Ito is responsible for Japanese oak wilt and
associated with P. quercivorus (59).
Although numerous
studies are exploring fungi associated with Euplatypus spp., Megaplatypus
spp. and Platypus spp., these Platypodinae genera, here referred to
as EMP, no comprehensive overview of these interactions has yet been compiled.
Scientific
databases enable modern research, offering a major reservoir of knowledge and
insights across disciplines. They have organized vast amounts of scholarly
literature, experimental data and research findings. This is the first time
that an EMP and associated fungi database is created to provide an updated
database that compiles trends and research hotspots among EMP species within
the genera Fusarium, Graphium and Raffaelea and other
fungi, enhancing data-sharing to advance science.
Methodology
A search was
conducted in the Global Biodiversity Information Facility (GBIF) database (www.gbif.org) and the Bark and Ambrosia Beetles of
North and Central America (BAB) database (www.barkbeetles.info)
to identify world records of species of the genera EMP. An extensive literature
search was performed using Google Scholar (www.scholar.google.com),
Scopus (www.scopus.com) and Web of Science (WoS) (www.mjl.clarivate.com) until March 2024. The
search included all species previously retrieved from GBIF-BAB and was based on
keywords: [each species] Euplatypus OR [each species] Megaplatypus OR
[each species] Platypus, plus (+) ‘Fusarium’ OR ‘Graphium’
OR ‘Raffaelea’ OR “Fungi’, the last including other fungal genera (e.g.
minus (-) ‘Fusarium’ - ‘Graphium’ - ‘Raffaelea’) (figure 1).
Figure
1.
Workflow of search combinations in database search. Numbers in parentheses
indicate the number of species within each genus.
Figura
1. Flujo de trabajo realizado mediante
combinaciones de búsqueda en diferentes buscadores. Los números entre
paréntesis indican el número de especies dentro de cada género.
An additional
investigation of GBIF was performed to find synonyms for EMP species. Only
English-written publications were included in this analysis. In the present
study, current species of Harringtonia, such as Harringtonia
lauricola (T.C. Harr., Fraedrich & Aghayeva) Z.W. de Beer & M.
Procter (23) were considered within the
genus Raffaelea due to their historical relevance. Searches covered the
last 124 years.
Retrieved publications were screened to meet specific criteria
for EMP, which included: 1) record(s) of the beetle-fungus association; 2)
geographical reference; and 3) the identity of plant hosts attacked by the
insect. The results of this bibliographic research were analyzed using R Studio (2021) on a curated dataset.
All the
publications of the bibliographic search were grouped under the following
categories: genus of the beetle, species of the beetle, fungal genus, fungal
species, region, author, year, longitude and latitude. Categories of
fungal species were Fusarium, Graphium, Raffaelea and ‘Other fungi’,
which included the rest of fungal genera. The category Author comprised
the author of each record or the author of the publication when the record was
not registered by the finder. Category Year included year of
registration or year of publication. The longitude and latitude of the
distribution data were obtained using Google Earth 7.1.3. Several reports
included only the country; yet, some cases, the province or city was also
informed. The map of records was drawn on the MapChart website (www.mapchart.net), where cities, provinces or
countries were painted on the map. An additional pie chart was added to each
record on the map to show the percentage of fungal records.
VOSviewer version 1.6.19 (2023) was used to build up a
network with leading authors, countries, institutions and keywords; it was set
up as follows: co-authorship analysis, without clusters, no-normalization,
attraction 8 and repulsion 1; co-occurrence analysis for all keywords, without
clusters Linlog/modularity, attraction 5 and repulsion 0 (23). In the network map made by this software,
each node represents elements, such as authors or countries; the size of nodes
represents frequency of occurrence; the color of nodes shows affiliation
according to co-authorship and co-occurrence analysis, respectively. The links
between two nodes establish collaborative relationships between elements, such
as authors or institutions. The thickness of the connecting lines increases
with higher collaboration frequencies, and papers with no connections were disregarded
by the software.
We selected for further analysis only studies where the
association between beetles and fungi was described; studies where the
beetle-fungi association was not reported as a new record were dismissed.
Sources
and Results
Searches with
Google Scholar retrieved more results than those with Scopus or WoS (figure 2). Google Scholar found fifty-six species of Euplatypus,
ninety-five species of Megaplatypus and over one thousand species of
Platypus in 2,481 publications: 219 publications for Euplatypus,
205 for Megaplatypus, and 2,057 for Platypus. Scopus retrieved
166 publications: 21 for Euplatypus, 11 for Megaplatypus and 134
for Platypus. WoS showed 124 publications: 20 for Euplatypus, 16
for Megaplatypus and 88 for Platypus (figure 2).
Figure
2.
Publications shown for each search combination (figure
1) in each search engine
(Google Scholar, Scopus and WoS).
Figura
2. Número de publicaciones obtenidas para cada combinación de
búsqueda (figura 1) en cada buscador
(Google Scholar, Scopus and WoS).
Google Scholar found sixty-eight publications on fungi related
to EMP, Scopus showed fifty-two and WoS retrieved forty-two. All publications
found via Scopus and WoS were also identified by Google Scholar. Most (55
publications) were related to Platypus spp. and their associated fungi
(82%). Nine publications reported Euplatypus and their associated fungi
(12%) and the remaining five publications (6%) dealt with Megaplatypus and
their associated fungi (figure 3).
Available
data range from 1945 to date (no records from 1900-1940 are available; data not
shown); (B) Number of publications on Euplatypus and Megaplatypus;
(C) Pie chart represents the percentage of publications for each beetle genus.
Los datos
disponibles abarcan desde 1945 hasta la actualidad (no se dispone de registros
para el periodo 1900-1940, datos no mostrados); (B) Número de publicaciones de Euplatypus
y Megaplatypus. (C) El gráfico de torta indica el porcentaje de
publicaciones para cada género de escarabajos.
Figure
3.
(A) Publications on the association between Fusarium-Graphium-Raffaelea (fungi)
and Platypus-Euplatypus-Megaplatypus (Platypodinae genera).
Figura 3. (A)
Publicaciones registradas sobre asociaciones entre Fusarium-Graphium-Raffaelea
y Platypus-Euplatypus-Megaplatypus (géneros de Platypodinae).
Most publications focused on the association of Platypodinae
with Raffaelea, followed by studies on the association of Platypodinae
genera with Fusarium spp. The specific Platypus-Raffaelea combination
was reported in the largest number of publications, followed by the Platypus-Other
fungi combination (figure 4). Conversely, research on
Platypodinae and Graphium, especially Euplatypus-Graphium and
Megaplatypus-Graphium, is limited (figure 4).
Figure
4.
Percentage of publications for each beetle genus–fungal genus combination
retrieved from Google Scholar.
Figura 4. Porcentaje
de publicaciones para cada combinación de géneros de escarabajo-género fúngico
recuperadas de Google Scholar.
Nine publications
associated Euplatypus with fungi; the beetle species were Euplatypus
compositus Say & T., Euplatypus longius Bright & Skidmore,
E. parallelus, Euplatypus segnis Bright & Skidmore and other
undescribed species of Euplatypus. Four publications linked M.
mutatus or Megaplatypus godmanii Bright & Skidmore to fungi, M.
mutatus being the species most widely studied within the genus. Fifty-five
publications related Platypus to fungi. Ten species of Platypus were
included in these studies: Platypus calamus Blandford, P. cylindrus,
Platypus externedentatus Faimare, Platypus flavicornis Dalman, P.
koryoensis, Platypus oxyurus Dufour, P. quercivorus, Platypus solidus F.
Walker, Platypus subgranosus Schedl., Platypus wilsoni J. M.
Swaine, together with undescribed species of Platypus.
Fungi associated
with EMP were Fusarium oxysporum Schltdl., Fusarium solani (Mart.)
Sacc. and undescribed species of Fusarium; Graphium basitruncatum (Matsush.)
Seifert & G. Okada and undescribed species of Graphium; Raffaelea
albimanens D.B. Scott & J.W. du Toit, Raffaelea ambrosiae Arx
& Hennebert, Raffaelea campbellii D.R. Simmons, A. Campb. & R.C.
Ploetz, Raffaelea canadensis L.R. Batra, Raffaelea cyclorhipidii D.R.
Simmons & Y.T. Huang, Raffaelea hennebertii D.B. Scott & J.W. du
Toit, R. lauricola, Raffaelea montetyi M. Morelet, Raffaelea quercina
M.L. Inácio, E. Sousa & F. Nóbrega, R. quercivora, Raffaelea
quercus-mongolicae K.H. Kim, Y.J. Choi & H.D. Shin, Raffaelea
rapaneae Musvuugwa, Z.W. de Beer, Dreyer & Roets, Raffaelea santoroi
Guerrero, Raffaelea subalba T.C. Harr., Aghayeva & Fraedrich and
undescribed species of Raffaelea. Other genera were also sporadically
obtained: Penicillium Link and Ceratocystis Ellis & Halst.,
among others (figure 5).
Darker colors denote more publications in each
combination.
La intensidad del color refleja un mayor número de
publicaciones en cada combinación.
Figure
5. Heatmap of the relationship between (A) beetle
genus-fungal genus and (B) fungal species and beetle species.
Figura
5. Mapa de calor sobre asociaciones
entre: (A) géneros de escarabajo-género fúngico; (B) especies de
escarabajo-especie fúngica.
Most of the studies retrieved in this research involved
interaction between P. quercivorus - R. quercivora (72 records,
17 publications) and P. koryoensis - R. quercus-mongolicae (62
records, 7 publications): two specific associations. Another
well-documented association was found between P. cylindrus-R. ambrosiae,
R. canadensis and R. montetyi (53 records, 15 publications). Platypus
cylindrus has been reported in Algeria, Canada, England, France, Portugal
and Tunisia.
Concerning Euplatypus,
most of the records of this genus include species of Fusarium and Raffaelea.
Euplatypus compositus (16 records, 6 publications) has been related to Raffaelea
spp. and other fungi, while E. paralellus (9 records, 6
publications) and E. segnis (5 records, 2 publications) have been linked
to Fusarium spp., Raffaelea spp. and other fungi. Most records of
Euplatypus come from the USA and Mexico, with a few from Southeast Asia
and Central America (Belice).
In the case of M.
mutatus, several studies have related this beetle to undescribed species of
Fusarium and Raffaelea, R. santoroi and G. basitruncatum (2, 17, 18, 19). This beetle has been found in
many countries; however, reports of its associated fungi are currently limited
to Argentina (2). Although this genus has
95 registered species, association with fungi (23 records, 5 publications) has
only been found in two, M. godmani and M. mutatus, both
considered as forest pests. The remaining species have not been
registered as pests or linked with fungi.
After reviewing the
results of bibliometric analysis for countries and authors, our findings
suggest that Argentina, Japan, Portugal, South Korea and the USA
(alphabetically) are the five countries leading research into ambrosia
fungi-Platypodinae (figure 6).
Co-authorship
was the type of analysis. Countries were the units of analysis. Density view
was selected.
La
coautoría fue el tipo de análisis. Los países fueron las unidades de análisis.
La visualización fue elegida por vista de densidad.
Figure
6. Map based on bibliographic data from selected
publications.
Figura
6. Mapa basado en datos bibliográficos,
a partir de publicaciones seleccionadas.
A total of 23 plant
genera were recorded as affected by the ambrosia beetle-fungi association (table 1), mainly angiosperms, with Carya Nutt.,
Castanopsis (D. Don) Spach, Casuarina L., Nothofagus Blume,
Persea Mill., Populus L. and Quercus L. being the genera most
commonly cited. However, most records belong to Quercus, with 198
records distributed across 13 countries worldwide.
Table 1. Summarizes the records from 69 publications, with 53 authors
of records, from 22 countries, covering the period from the beginning of the
last century to the present.
Tabla
1. Resume la información sobre los registros contenidos en 69
publicaciones, con 53 autores de registros, entre 22 países, abarcando el
período desde el inicio del siglo pasado hasta la actualidad.

Detailed
data for each record can be found in Table
1S.
Los
datos detallados de cada registro se pueden encontrar en la Tabla
1S.
Through a map of
density on Vosviewer, 17 countries seemed to be the most relevant for authors
and institutions. A higher density shown by a more intense color and larger
bubbles represented greater participation of that country in studies on
ambrosia beetles and their associated fungi. Japan, Portugal, South Korea and
the USA showed the highest number of publications on ambrosia beetle-fungi
within Platypodinae (figure 7).
Co-authorship
was the type of analysis. Countries were the units of analysis. Density view
was selected.
La
coautoría fue el tipo de análisis. Los países fueron las unidades de análisis.
La visualización fue elegida por vista de densidad.
Figure
7. Map based on selected bibliographic data.
Figura
7. Mapa basado en datos bibliográficos
seleccionados.
As a result of the keyword analysis, the nine most important
words were identified: Fungi, Coleoptera, Platypodidae, Scolytinae,
Curculionidae, classification, phylogeny, Platypus quercivorus and
Ophiostomaceae (figure 8).
Co-occurrences
were the type of analysis. Keywords were the units of analysis; the size of
each word indicates frequency of occurrence and interaction with the different
articles analyzed.
Las
coocurrencias fueron el tipo de análisis. Las palabras clave fueron las
unidades de análisis; el tamaño de cada palabra indica su frecuencia de
aparición y su interacción con los diferentes artículos analizados.
Figure
8. Map based on selected bibliographic data.
Figura 8. Mapa
basado en datos bibliográficos seleccionados.
Some of these keywords
were repeated throughout all the publications considered in this survey, thus
underlying the importance of certain groups of words identified in this
analysis. Fungi and Coleoptera appeared as prominent words in all these
articles, which were our areas of interest in this study. The term Platypodidae
was associated with an older taxonomic classification of this taxon, now placed
at the rank of subfamily Platypodinae. The frequent usage of this keyword is
probably attributed to the fact that it has been used for a long time. Another
prominent word is Curculionidae, the family that includes (both) Platypodinae
and Scolytinae.
Another keyword was ophiostomatoid, an artificial fungi group of
Ascomycota which includes important tree pathogens that cause tree mortality
and can develop a symbiotic relationship with EMP, as in the species of Graphium
and Raffaelea (28, 39, 57).
This group is also composed of many of the fungal genera analyzed in this
study, categorized as ‘Other fungi’, along with these two key genera
that were our primary focus.
Discussion
In the present study, bibliometric information was used to
analyze literature on fungi associated with three genera of Platypodinae, from
the beginning of the nineteenth century to the present, to gain a clearer
understanding of current research, trends and hotspots of these associations.
More publications were found on Google Scholar than on Scopus or WoS.
Accordingly, further analysis was performed using Google Scholar.
The first studies
on Platypus and their associated fungi were published in 1945; however,
before 2000, no publications were found on Euplatypus or Megaplatypus
with their associated fungi. Since 2000, the number of publications has
rapidly increased, especially since the 2010s. This could be linked an
increasing interest in understanding the relationship between the dispersion of
ambrosia beetles, including Platypodinae, and their impact on global economies,
while also addressing the influence of international trade and climate change
on these beetle-fungi interactions (36, 64, 76, 90).
An increase in global temperature and the occurrence of extreme meteorological
events might contribute to changing population outbreaks and propagating
non-native ambrosia beetles outside their native range (76). Most fungal records correspond to Raffaelea,
which has a worldwide distribution. Raffaelea is a crucial genus in most
platypodine ambrosial associations, and a few of its species are regarded as
important phytopathogens (20). Raffaelea
quercivora plays a causal role in mass mortality syndrome in Japanese oaks (57); it has been described throughout Japan as
associated with P. quercivorus. This beetle species is a prominent
keyword due to its economic relevance in Japan and the substantial number of
associated studies (57). The
pathogenicity of R. quercus-mongolicae has not been fully confirmed (54); nevertheless, its association with P.
koryoensis has been intensively studied in South Korea. Several other
species of Raffaelea have been found to be associated with P.
cylindrus (4, 11, 13, 45, 47, 48, 49).
Fusarium species, on the
other hand, seem to be relevant for the establishment of forest pests (20). Reports of Fusarium concentrate on
the Northern Hemisphere and are more common than those of Graphium. Note
that the presence of this genus might be underestimated in diversity studies,
especially when using culture-based methods that benefit the growth of more
competitive taxa (42). Publications on
fungi are found mostly in Argentina, Japan, South Korea, Portugal and the USA.
Finally, Graphium species have been associated with mycangial
platypodines and can also be present in galleries and male exoskeletons, as in
the case of M. mutatus-G. basitruncatum. It has been proposed
that G. basitruncatum is one of the first colonizers of the host plant,
particularly in newly excavated portions (20).
The almost skewed
distribution of the publications analyzed shows that only those countries where
EMP genera have been registered as forest pests have further studied their
associated fungi. This distribution underlines the importance of these
microorganisms at the time of pest settlement and the concentrated research
efforts aimed at gaining a deeper understanding of these interactions for
effective control i.e. as made for other biological models (73, 91).
In the
co-occurrence network, which indicates collaboration between countries, it
appears that there are limited collaborative relationships among these five
countries. A relevant example is the promising and collaborative research
program known as the ‘Bark Beetle Mycobiome’, dedicated to defining research
priorities for the widespread insect-fungus symbiosis involving bark beetles.
However, these programs are currently absent in the context of three genera of
Platypodinae and of ambrosia beetles-fungi symbiosis. Initiating and
strengthening these collaborations is essential to address knowledge gaps in
this area.
Conclusion
This bibliometric
analysis was successful in establishing the state-of-the-art publications on
the relationship between EMP and fungi, indicating the most widely studied
genera of beetles and fungi. The significance of ambrosia fungi as drivers of
ecological interactions has been increasingly recognized. However, the present
results suggest that ambrosia mycobiota is still underrepresented in research.
Gaining thorough understanding of these interactions will shed light on the
interconnectedness of species, contributing to our overall understanding of
ecosystem dynamics and resilience.
Our analysis shows that Argentina, Japan, Portugal, South Korea
and the USA (alphabetically ordered), among many other countries, have been
conducting researches on fungal ambrosia, with limited collaboration between
them. Despite successful collaborative initiatives internationally, there is a
growing need for more effective partnerships to deepen the knowledge of South
American ambrosia beetle-fungi symbiosis.
Acknowledgements
This work was
supported by the Consejo Nacional de Investigaciones Científicas y Técnicas
(CONICET PIP 0844) and Ministerio de Ciencia, Tecnología e Innovación (PICT-BID
2019-0100, PICT BID 2020-00513).
The authors thank Diego Higer for his advice on the use of the
software, as well as his support in database accessibility. We also thank
Mariana Valente for her invaluable assistance with images.
1.
Alamouti, S. M.; Tsui, C. K.; Breuil, C. 2009. Multigene phylogeny of
filamentous ambrosia fungi associated with ambrosia and bark beetles.
Mycological research. 113(8): 822-835.
https://doi.org/10.1016/j.mycres.2009.03.003
2.
Alfaro, R.; Humble, L.; Gonzalez, P.; Villaverde, R.; Allegro, G. 2007. The
threat of the ambrosia beetle Megaplatypus mutatus (Chapuis) (= Platypus
mutatus Chapuis) to world poplar resources. Forestry. 80(4): 471-479.
https://doi.org/10.1093/forestry/cpm029
3.
Alvidrez-Villarreal, R.; Hernández-Castillo, F. D.; Garcia-Martínez, O.;
Mendoza-Villarreal, R.; Rodríguez-Herrera, R.; Aguilar, C. N. 2012. Isolation
and pathogenicity of fungi associated with the ambrosia borer (Euplatypus
segnis) found injuring pecan (Carya illinoensis) wood. Agricultural
Sciences. 3(3): 19041. https://doi.org/10.4236/as.2012.33048
4.
Amoura, M.; Inácio, M. L.; Nóbrega, F.; Bonifacio, L.; Sousa, E.; Chakali, G.
2021. Fungi associated with Platypus cylindrus Fab. (Coleoptera:
Curculionidae) from Quercus suber L. in North-Eastern Algeria.
International Journal of Agricultural Policy and Research. 9(1): 1-8.
https://doi. org/10.15739/IJAPR.21.001
5.
Ángel-Restrepo, M.; Parra, P.; Ochoa-Ascencio, S.; Fernández-Pavía, S.;
Vázquez-Marrufo, G.; Equihua-Martínez, A.; Barrientos-Priego, A.; Ploetz, P.;
Konkol, J.; Saucedo-Carabez, J.; Gazis, R. 2022. First look into the ambrosia
beetle–fungus symbiosis present in commercial avocado orchards in Michoacán,
Mexico. Environmental Entomology. 51(2): 385-396.
https://doi.org/10.1093/ee/nvab142
6.
Araújo, J. P.; Li, Y.; Duong, T. A.; Smith, M. E.; Adams, S.; Hulcr, J. 2022.
Four new species of Harringtonia: unravelling the laurel wilt fungal
genus. Journal of Fungi. 8(6): 613. https:// doi.org/10.3390/jof8060613
7.
Bakshi, B. K. 1950. Fungi associated with ambrosia beetles in Great Britain.
Transactions of the British Mycological Society. 33(1-2): 111-IN11.
https://doi.org/10.1016/S0007- 1536(50)80054-2
8.
Batra, L. R. 1967. Ambrosia fungi: a taxonomic revision, and nutritional
studies of some species. Mycologia. 59(6): 976-1017.
https://doi.org/10.1080/00275514.1967.12018485
9.
Beaver, R. A. 2013. The invasive Neotropical ambrosia beetle Euplatypus
parallelus (Fabricius 1801) in the Oriental region and its pest status
(Coleoptera: Curculionidae: Platypodinae). Entomologist’s Monthly Magazine.
149(1): 143-154.
10.
Beaver, R. A.; Liu, L. Y. 2013. A synopsis of the pin-hole borers of Thailand
(Coleoptera: Curculionidae: Platypodinae). Zootaxa. 3646(4): 447-486.
http://dx.doi.org/10.11646/zootaxa.3646.4.7
11.
Belhoucine, L.; Bouhraoua, R. T.; Meijer, M.; Houbraken, J.; Harrak, M. J.;
Samson, R. A.; Equihua-Martinez, A.; Pujade-Villar, J. 2011. Mycobiota
associated with Platypus cylindrus (Coleoptera: Curculionidae,
Platypodidae) in cork oak stands of north west Algeria, Africa. African Journal
of Microbiology Research. 5(25): 4411-4423.
12.
Bellahirech, A.; Inácio, M. L.; Bonifácio, L.; Nóbrega, F.; Sousa, E.; Ben
Jamâa, M. L. 2014. Comparison of fungi associated with Platypus cylindrus F.
(Coleoptera: Platypodidae) in Tunisian and Portuguese cork oak stands.
IOBC/wprs Bull. 101: 149-156.
13.
Bellahirech, A.; Inácio, M. L.; Ben Jamâa, M. L.; Nóbrega, F. 2018.
Ophiostomatoid fungi associated with the ambrosia beetle Platypus cylindrus in
cork oak forests in Tunisia. Tunisian Journal of Plant Protection. 13: 61-76.
14.
Bellahirech, A.; Inácio, M. L.; Woodward, S.; Ben Jamâa, M. L.; Nóbrega, F.
2019. Ophiostoma tsotsi and Ophiostoma quercus associated with Platypus
cylindrus F. (Coleoptera: Curculionidae) in cork oak stands in Tunisia.
Forest Pathology. 49(1): 12482. https://doi.org/10.1111/ efp.12482
15.
Bumrungsri, S.; Beaver, R.; Phongpaichit, S.; Sittichaya, W. 2008. The
infestation by an exotic ambrosia beetle, Euplatypus parallelus (F.)
(Coleoptera: Curculionidae: Platypodinae) of Angsana trees (Pterocarpus
indicus Willd.) in southern Thailand. Songklanakarin Journal of Science
& Technology. 30(5): 579-582.
16.
Cassier, P.; Lévieux, J.; Morelet, M.; Rougon, D. 1996. The mycangia of Platypus
cylindrus Fab. and P. oxyurus Dufour (Coleoptera: Platypodidae).
Structure and associated fungi. Journal of Insect Physiology. 42(2): 171-179.
https://doi.org/10.1016/0022-1910(95)00056-9
17.
Ceriani-Nakamurakare, E.; Slodowicz, M.; González-Audino, P.; Dolinko, A.;
Carmaran, C. 2016. Mycobiota associated with the ambrosia beetle Megaplatypus
mutatus: threat to poplar plantations. Forestry. 89(2): 191-200.
https://doi.org/10.1093/forestry/cpw001
18.
Ceriani-Nakamurakare, E.; Ramos, S.; Robles, C.; Novas, M. V.; D´Jonsiles, M.
F.; González-Audino, P.; Carmarán, C. 2018. Metagenomic approach of associated
fungi with Megaplatypus mutatus (Coleoptera: Platypodinae). Silva
Fennica. 52(3): 9940. https://doi. org/10.14214/sf.9940
19.
Ceriani-Nakamurakare, E.; Mc Cargo, P.; Gonzalez-Audino, P.; Ramos, S.;
Carmarán, C. 2020. New insights into fungal diversity associated with Megaplatypus
mutatus: gut mycobiota. Symbiosis. 81: 127-137. https://doi.org/10.1007/s13199-020-00687-8
20.
Ceriani-Nakamurakare, E.; Robles, C.; González-Audino, P.; Dolinko, A.; Mc
Cargo, P.; Corley, J.; Allison, J.; Carmarán, C. 2022. The ambrosia beetle Megaplatypus
mutatus: a threat to global broad-leaved forest resources. Journal of
Integrated Pest Management. 13(1): 21. https://doi.org/10.1093/jipm/pmac016
21.
De Beer, Z. W.; Seifert, K. A.; Wingfield, M. J. 2013. A nomenclator for
ophiostomatoid genera and species in the Ophiostomatales and Microascales. In:
Seifert K. A.; De Beer, Z. W.; Wingfield, M. J. (Eds). The ophiostomatoid
fungi: expanding frontiers. CBS-KNAW Fungal Biodiversity Center, Utrecht.
245-322.
22.
De Beer, Z. W.; Procter, M.; Wingfield, M. J.; Marincowitz, S.; Duong, T. A.
2022. Generic boundaries in the Ophiostomatales reconsidered and revised.
Studies in Mycology. 101(1): 57-120.
23.
de Souza, T. D.; Pinto, A. A.; da Silva, L. F. V; Maciel, R. M. A.; Sosa‐Gomez, D. R. 2023. Bibliometric analysis
of global research on fungal Metarhizium rileyi based on Web of Science.
Agronomy Journal. 115(1): 96-107. https://doi.org/10.1002/agj2.21203
24.
Dreaden, T. J.; Davis, J. M.; De Beer, Z. W.; Ploetz, R. C.; Soltis, P. S.;
Wingfield, M. J.; Smith, J. A. 2014. Phylogeny of ambrosia beetle symbionts in
the genus Raffaelea. Fungal Biology. 118(12): 970-978.
https://doi.org/10.1016/j.funbio.2014.09.001
25.
Endoh, R.; Suzuki, M.; Benno, Y. 2008a. Pichia rarassimilans sp. nov., a
novel yeast species isolated from body surface of the ambrosia beetle Platypus
quercivorus. The Journal of General and Applied Microbiology. 54(3):
181-186. https://doi.org/10.2323/jgam.54.181
26.
Endoh, R.; Suzuki, M.; Benno, Y. 2008b. Ambrosiozyma kamigamensis sp.
nov. and A. neoplatypodis sp. nov., two new ascomycetous yeasts from
ambrosia beetle galleries. Antonie van Leeuwenhoek. 94: 365-376.
https://doi.org/10.1007/s10482-008-9253-z
27.
Endoh, R.; Suzuki, M.; Benno, Y.; Futai, K. 2008c. Candida kashinagacola sp.
nov., C. pseudovanderkliftii sp. nov. and C. vanderkliftii sp.
nov., three new yeasts from ambrosia beetle-associated sources. Antonie van
Leeuwenhoek. 94: 389-402. https://doi.org/10.1007/s10482-008- 9256-9
28.
Endoh, R.; Suzuki, M.; Okada, G.; Takeuchi, Y.; Futai, K. 2011. Fungus
symbionts colonizing the galleries of the ambrosia beetle Platypus
quercivorus. Microbial ecology. 62: 106-120.
https://doi.org/10.1007/s00248-011-9838-3
29.
EPPO/OEPP Pest Risk Analysis Reporting Service. 2004a. First report of Platypus
mutatus in Italy: addition to the EPPO Alert List Nª 04 2004/061.
30.
EPPO/OEPP Pest Risk Analysis Reporting Service. 2004b. New information on Platypus
mutatus. 2004/166.
31.
EPPO/OEPP Pest Risk Analysis Reporting Service. 2020. Update on the situation
of Megaplatypus mutatus in Italy. 2020/218.
32.
Esaki, K.; Kato, K.; Kamata, N. 2004. Stand‐level
distribution and movement of Platypus quercivorus adults and patterns of
incidence of new infestation. Agricultural and Forest Entomology, 6(1): 71-82.
https://doi.org/10.1111/j.1461-9563.2004.00206.x
33.
Geib, S. M.; Scully, E. D.; Jimenez-Gasco, M. M.; Carlson, J. E.; Tien, M.;
Hoover, K. 2012. Phylogenetic analysis of Fusarium solani associated
with the Asian longhorned beetle, Anoplophora glabripennis. Insects. 3:
141-160. https://doi.org/10.3390/insects3010141
34.
González-Audino, P.; Griffo, R.; Gatti, P.; Allegro, G.; Zerba, E. 2013.
Pheromone detection of the introduced forest pest Megaplatypus mutatus (=
Platypus mutatus) (Chapuis) (Platypodinae, Curculionidae) in Italy.
Agroforestry systems. 87: 109-115. https://doi. org/10.1007/s10457-012-9527-3
35.
Green, C. P.; Branch, N. P.; Coope, G. R.; Field, M. H.; Keen, D. H.; Wells, J.
M.; Gleed-Owen, C. P. 2006. Marine Isotope Stage 9 environments of fluvial
deposits at Hackney, north London, UK. Quaternary Science Reviews. 25(1-2):
89-113. https://doi.org/10.1016/j. quascirev.2004.10.011
36.
Grégoire, J. C.; Raffa, K. F.; Lindgren, B. S. 2015. Economics and politics of
bark beetles. In: Vega, F. E.; Hofstetter, R. W. (Eds.). Bark beetles: biology
and ecology of native and invasive species. UK, London Elsevier Academic Press.
585-613.
37.
Haack, R. A.; Cavey, J. F.; Hoebeke, E. R.; Law, K. 1996. Anoplophora
glabripennis: a new tree-infesting exotic cerambycid invades New York.
Newsletter of the Michigan Entomological Society. 41(2-3): 1-3.
38.
Harrington, T. C.; Fraedrich, S. W.; Aghayeva, D. N. 2008. Raffaelea
lauricola, a new ambrosia beetle symbiont and pathogen on the Lauraceae.
Mycotaxon. 104: 399-404.
39.
Harrington, T. C.; Aghayeva, D. N.; Fraedrich, S. W. 2010. New combinations in Raffaelea,
Ambrosiella, and Hyalorhinocladiella, and four new species from the
redbay ambrosia beetle, Xyleborus glabratus. Mycotaxon. 111: 337-361.
https://doi.org/10.5248/111.337
40.
Huang, Y. T.; Skelton, J.; Hulcr, J. 2019. Multiple evolutionary origins lead
to diversity in the metabolic profiles of ambrosia fungi. Fungal Ecology. 38:
80-88. https://doi.org/10.1016/j. funeco.2018.03.006
41.
Hulcr, J.; Dunn, R. 2011. The sudden emergence of pathogenicity in
insect–fungus symbioses threatens naive forest ecosystems. Proceedings of the
Royal Society B: Biological Sciences. 278(1720): 2866-2873. https://doi.org/10.1098/rspb.2011.1130
42.
Hulcr, J.; Stelinski, L. L. 2017. The ambrosia symbiosis: from evolutionary
ecology to practical management. Annual Review of Entomology. 62: 285-303.
https://doi.org/10.1146/ annurev-ento-031616-035105
43.
Imai, K.; Mitsunaga, T.; Takemoto, H.; Yamada, T.; Ito, S. I.; Ohashi, H. 2009.
Extractives of Quercus crispula sapwood infected by the pathogenic fungi
Raffaelea quercivora I: comparison of sapwood extractives from
noninfected and infected samples. Journal of wood science. 55: 126-132.
https://doi.org/10.1007/s10086-008-1005-1
44.
Inácio, M. L.; Henriques, J.; Lima, A.; Sousa, E. 2008. Fungi of Raffaelea genus
(Ascomycota: Ophiostomatales) associated to Platypus cylindrus (Coleoptera:
Platypodidae) in Portugal. Revista de Ciências Agrárias. 31(2): 96-104.
https://doi.org/10.19084/ rca.15606
45.
Inácio, M. L.; Henriques, J.; Sousa, E. 2010. Mycobiota associated with Platypus
cylindrus Fab. (Coleoptera: Platypodidae) on cork oak in Portugal.
IOBC/wprs Bull. 57: 87-95.
46.
Inácio, M. L.; Henriques, J.; Sousa, E. 2011. Contribution of symbiotic fungi
to cork oak colonization by Platypus cylindrus (Coleoptera:
Platypodidae). Silva Lusitana. 19: 89-99.
47.
Inácio, M. L.; Henriques, J.; Lima, A.; Sousa, E. 2012. Ophiostomatoid fungi
associated with cork oak mortality in Portugal. IOBC/wprs Bulletin. 76: 89-92.
48.
Inácio, M. L.; Marcelino, J.; Lima, A.; Sousa, E.; Nóbrega, F. 2021. Raffaelea
quercina sp. nov. associated with cork oak (Quercus suber L.)
decline in Portugal. Forests. 12(4): 513. https://doi. org/10.3390/f12040513
49.
Inácio, M. L.; Marcelino, J.; Lima, A.; Sousa, E.; Nóbrega, F. 2022. Ceratocystiopsis
quercina sp. nov. associated with Platypus cylindrus on declining Quercus
suber in Portugal. Biology. 11(5): 750.
https://doi.org/10.3390/biology11050750
50.
Johnson, B. A.; Tateishi, R.; Hoan, N. T. 2012. Satellite image pansharpening
using a hybrid approach for object-based image analysis. ISPRS International
Journal of Geo-Information. 1(3): 228-241. https://doi.org/10.3390/ijgi1030228
51.
Kile, G. A.; Walker, J. 1987. Chalara australis sp nov (Hyphomycetes), a
vascular pathogen of Nothofagus cunninghamii (Fagaceae) in Australia and
its relationship to other Chalara species. Australian Journal of Botany.
35(1): 1-32. https://doi.org/10.1071/BT9870001
52.
Kile, G. A.; Hall, M. F. 1988. Assessment of Platypus subgranosis as a
vector of Chalara australis, causal agent of a vascular disease of Nothofagus
cunninghamii. Zealand Journal of Forestry Science. 18(2): 166-86.
53.
Kim, K. H.; Choi, Y. J.; Seo, S. T.; Shin, H. D. 2009. Raffaelea
quercus-mongolicae sp. nov. associated with Platypus koryoensis on
oak in Korea. Mycotaxon. 110(1): 189-197. https://doi. org/10.5248/110.189
54.
Kim, M. S.; Hohenlohe, P. A.; Kim, K. H.; Seo, S. T.; Klopfenstein, N. B. 2016.
Genetic diversity and population structure of Raffaelea quercus‐mongolicae, a fungus associated with oak mortality
in South Korea. Forest pathology. 46(2): 164-167. https://doi.org/10.1111/
efp.12263
55.
Kinuura, H. 2002. Relative dominance of the mold fungus, Raffaelea sp.,
in the mycangium and proventriculus in relation to adult stages of the oak
platypodid beetle, Platypus quercivorus (Coleoptera; Platypodidae).
Journal of forest research. 7(1): 7-12. https://doi. org/10.1007/BF02762592
56.
Komura, R.; Kamata, N.; Kubo, M.; Muramoto, K. I. 2005. Japanese oak wilt (JOW)
using high spatial resolution satellite imagery. Proceedings IEEE International
Conference Geoscience Remote Sensing, Seoul.
https://doi.org/10.1109/IGARSS.2005.1525882
57.
Kubono, T.; Ito, S. I. 2002. Raffaelea quercivora sp. nov. associated
with mass mortality of Japanese oak, and the ambrosia beetle (Platypus
quercivorus). Mycoscience. 43: 0255-0260. https://
doi.org/10.1007/s102670200037
58.
Kumar, R. V. 2021. Exploratory data analysis using R & RStudio. 1-23.
Bhubaneswar, India: International Management Institute.
59.
Kusumoto, D.; Masuya, H.; Hirao, T.; Goto, H.; Hamaguchi, K.; Chou, W. I.;
Suasa-ard, W.; Buranapanichpan, S.; Uraichen, S.; Kern-asa, O.; Sanguansub, S.;
Panmongkol, A.; Quang, T.; Kahono, S.; Julistiono, H.; Kamata, N. 2014.
Discoloration induced by Raffaelea quercivora isolates in Quercus
serrata logs and its relation to phylogeny: a comparison among isolates
with and without the Japanese oak wilt incidence including outside of Japan.
Journal of Forest Research. 19(4): 404-410.
https://doi.org/10.1007/s10310-013-0420-3
60.
Lee, D. H.; Son, S. Y.; Seo, S. T.; Lee, J. K. 2020. Investigation of the
mating‐type distribution of Raffaelea
quercus‐mongolicae in South Korea. Forest Pathology. 50(3):
e12590. https:// doi.org/10.1111/efp.12590
61.
Lee, D. H.; Jung, J. M.; Seo, S. T. 2021. Population genetic structure of Raffaelea
quercus‐mongolicae indicates a recent fungal introduction
event to Jeju Island from inland areas of South Korea. Plant Pathology. 70(8):
1871-1882. https://doi.org/10.1111/ppa.13427
62.
Li, Y.; Huang, Y. T.; Kasson, M. T.; Macias, A. M.; Skelton, J.; Carlson, P.
S.; Yin, M.; Hulcr, J. 2018. Specific and promiscuous ophiostomatalean fungi
associated with Platypodinae ambrosia beetles in the southeastern United
States. Fungal Ecology. 35: 42-50. https://doi.org/10.1016/j.
funeco.2018.06.006
63.
Lopez, A. L.; Pamunag, C. M.; Lozada, A. O.; Bagaforo, R. O. 2022. First report
of the pinhole borer (Euplatypus sp.) to cause stem bleeding of rubber
trees in the Philippines. Journal of Rubber Research. 25(2): 151-155.
https://doi.org/10.1007/s42464-022-00165-4
64.
Marini, L.; Haack, R. A.; Rabaglia, R. J.; Petrucco Toffolo, E.; Battisti, A.;
Faccoli, M. 2011. Exploring associations between international trade and
environmental factors with establishment patterns of exotic Scolytinae.
Biological Invasions. 13: 2275-2288. https://doi. org/10.1007/s10530-011-0039-2
65.
Matsuda, Y.; Kimura, K.; Ito, S. I. 2010. Genetic characterization of Raffaelea
quercivora isolates collected from areas of oak wilt in Japan. Mycoscience.
51(4): 310-316. https://doi. org/10.1007/S10267-010-0040-0
66.
McKenzie, E. H. C.; Buchanan, P. K.; Johnston, P. R. 2000. Checklist of fungi
on Nothofagus species in New Zealand. New Zealand Journal of Botany.
38(4): 635-720. https://doi.org/10.1080/0 028825X.2000.9512711
67.
Menocal, O.; Kendra, P. E.; Montgomery, W. S.; Crane, J. H.; Carrillo, D. 2018.
Vertical distribution and daily flight periodicity of ambrosia beetles
(Coleoptera: Curculionidae) in Florida avocado orchards affected by laurel
wilt. Journal of Economic Entomology. 111(3): 1190-1196.
https://doi.org/10.1093/jee/toy044
68.
Morales-Ramos, J. A.; Rojas, M. G.; Sittertz-Bhatkar, H.; Saldaña, G. 2000.
Symbiotic relationship between Hypothenemus hampei (Coleoptera:
Scolytidae) and Fusarium solani (Moniliales: Tuberculariaceae). Annals
of the Entomological Society of America. 93: 541-547. https://
doi.org/10.1603/0013-8746(2000)093[0541:SRBHHC]2.0.CO;2
69.
Morales-Rodríguez, C.; Sferrazza, I.; Aleandri, M. P.; Dalla Valle, M.;
Speranza, S.; Contarini, M.; Vannini, A. 2021. The fungal community associated
with the ambrosia beetle Xylosandrus compactus invading the
mediterranean maquis in central Italy reveals high biodiversity and suggests
environmental acquisitions. Fungal biology. 125(1): 12-24. https://doi.
org/10.1016/j.funbio.2020.09.008
70.
Musvuugwa, T. 2014. Biodiversity and ecology of ophiostomatoid fungi associated
with trees in the Cape Floristic Region of South Africa. Stellenbosch
University, Ph.D.
71.
Musvuugwa, T; De Beer, Z. W.; Duong, T. A.; Dreyer, L. L.; Oberlander, K. C.;
Roets, F. 2015. New species of Ophiostomatales from Scolytinae and Platypodinae
beetles in the Cape Floristic Region, including the discovery of the sexual
state of Raffaelea. Antonie van Leeuwenhoek. 108: 933-950.
https://doi.org/10.1007/s10482-015-0547-7
72.
Nakajima, H.; Ishida, M. 2014. Decline of Quercus crispula in abandoned
coppice forests caused by secondary succession and Japanese oak wilt disease:
Stand dynamics over twenty years. Forest Ecology and Management. 334: 18-27.
https://doi.org/10.1016/j. foreco.2014.08.021
73.
Pelizza, S.; Mancini, M.; Russo, L.; Vianna, F.; Scorsetti, A. C. 2023. Control
capacity of the LPSc 1067 strain of Beauveria bassiana (Ascomycota:
Hypocreales) on different species of grasshoppers (Orthoptera: Acrididae:
Melanoplinae), agricultural pests in Argentina. Revista de la Facultad de
Ciencias Agrarias. Universidad Nacional de Cuyo. Mendoza. Argentina. 55(1):
98-103. DOI: https://doi.org/10.48162/rev.39.099
74.
Peña, J. E; Weihman, S. W.; McLean, S.; Cave, R. D.; Carrillo, D.; Duncan, R.
E.; Krauth, S.; Thomas, M.; Lu, S.; Kendra, P. E.; Roda, A. L. 2015. Predators
and parasitoids associated with Scolytinae in Persea species (Laurales:
Lauraceae) and other Lauraceae in Florida and Taiwan. Florida Entomologist.
98(3): 903-910. https://doi.org/10.1653/024.098.0314
75.
Ploetz, R. C.; Konkol, J. L.; Narvaez, T.; Duncan, R. E.; Saucedo, R. J.;
Mantilla, J.; Campbell, A.; Carrillo, D.; Kendra, P. E. 2017. Presence and
prevalence of Raffaelea lauricola, cause of laurel wilt, in different
species of ambrosia beetle in Florida, USA. Journal of Economic Entomology.
110(2): 347-354. https://doi.org/10.1093/jee/tow292
76.
Pureswaran, D. S.; Meurisse, N.; Rassati, D.; Liebhold, A. M.; Faccoli, M.
2022. Climate change and invasions by nonnative bark and ambrosia beetles. In:
Hostetter, R. W.; Gandhi, K. (Eds.) Bark beetle management, ecology and climate
change. USA, New York Academic Press. 3-30.
https://doi.org/10.1016/B978-0-12-822145-7.00002-7
77.
Ridley, G. S.; Bain, J.; Bulman, L. S.; Dick, M. A.; Kay, M. K. 2000. Threats
to New Zealand’s indigenous forests from exotic pathogens and pests. Department
of Conservation, Wellington, Science for Conservation. 142. 67.
78.
Roeper, R. A. 1972. Biology of symbiotic fungi associated with ambrosia beetles
of western United States. Oregon State University, Ph.D. 145 p.
79.
Qi, H. Y.; Wang, J. G.; Endoh, R., Takeuchi, Y.; Tarno, H.; Futai, K. 2011. Pathogenicity
of microorganisms isolated from the oak platypodid, Platypus quercivorus (Murayama)
(Coleoptera: Platypodidae). Applied entomology and zoology. 46: 201-210.
https://doi.org/10.1007/ s13355-011-0032-3
80.
Sánchez, M. E.; Venegas, J.; Romero, M. A.; Phillips, A. J.; Trapero, A. 2003. Botryosphaeria
and related taxa causing oak canker in southwestern Spain. Plant disease.
87(12): 1515-1521. https://doi.org/10.1094/PDIS.2003.87.12.1515
81.
Sanderson, F. R.; King, F. Y.; Pheng, Y. C.; Ho, O. K.; Anuar, S. 1997. A Fusarium
wilt (Fusarium oxysporum) of angsana (Pterocarpus indicus) in
Singapore: I. Epidemiology and identification of the causal organism.
Arboricultural Journal. 21(3): 187-204. https://doi. org/10.1080/0307
1375.1997.9747165
82.
Saragih, S. A.; Kusumoto, D.; Takemoto, S.; Torii, M.; Kamata, N. 2021.
Virulence of fungi isolated from ambrosia beetles to Acer amoenum branches.
Plant Disease. 105(10): 3087-3091. https://doi.org/10.1094/PDIS-11-20-2543-R
83.
Scott, D. B.; Du Toit, J. W. 1970. Three new Raffaelea species.
Transactions of the British Mycological Society. 55(2): 181-IN1.
84.
Seo, M. Y.; Matsuda, Y.; Nakashima, C.; Ito, S. I. 2012. Taxonomic reevaluation
of Raffaelea quercivora isolates collected from mass mortality of oak
trees in Japan. Mycoscience. 53(3): 211-219.
https://doi.org/10.1007/S10267-011-0154-Z
85.
Simmons, D.; De Beer, Z.; Huang, Y.; Bateman, C.; Campbell, A.; Dreaden, T. J.;
Li, Y.; Ploetz, R.; Black, A.; Li, H.; Chen, C.; Wingfied, M.; Hulcr, J. 2016.
New Raffaelea species (Ophiostomatales) from the USA and Taiwan
associated with ambrosia beetles and plant hosts. IMA fungus. 7: 265-273. https://doi.org/10.5598/imafungus.2016.07.02.06
86.
Soulioti, N.; Tsopelas, P.; Woodward, S. 2015. Platypus cylindrus, a
vector of Ceratocystis platani in Platanus orientalis stands in
Greece. Forest pathology. 45(5): 367-372. https://doi. org/10.1111/efp.12176
87.
Suh, D. Y.; Hyun, M. W.; Kim, S. H.; Seo, S. T.; Kim, K. H. 2011. Filamentous
fungi isolated from Platypus koryoensis, the insect vector of oak wilt
disease in Korea. Mycobiology. 39(4): 313-316.
https://doi.org/10.5941/MYCO.2011.39.4.313
88.
Takahashi, Y. S.; Matsushita, N.; Hogetsu, T. 2015. Genotype distribution of Raffaelea
quercivora in the oak galleries and its composition in the mycangia of Platypus
quercivorus. Forest Pathology. 45(2): 149-154. https://doi.org/
10.1111/efp.12148
89.
Tarno, H.; Septia, E. D.; Aini, L. Q. 2016. Microbial community associated with
ambrosia beetle, Euplatypus parallelus on sonokembang, Pterocarpus
indicus in Malang. Agrivita Journal of Agricultural Science. 38(3):
312-320.
90.
Urvois, T.; Auger-Rozenberg, M. A.; Roques, A.; Rossi, J. P.; Kerdelhue, C.
2021. Climate change impact on the potential geographical distribution of two
invading Xylosandrus ambrosia beetles. Scientific Reports. 11(1): 1339.
https://doi.org/10.1038/s41598-020-80157-9
91.
Vianna, F.; Russo, L.; Troncozo, I.; Ferreri, N.; de Abajo, J. M.; Scorsetti,
A. C.; Pelizza, S. 2023. Susceptibility of Rhyzopertha dominica(Coleoptera:
Bostrichidae) and Sitophilus oryzae (Coleoptera: Curculionidae) to the
fungal entomopathogen Beauveria bassiana (Balsamo-Crivelli) Vuillemin
s.l. (Hypocreales: Clavicipitaceae). Revista de la Facultad de Ciencias
Agrarias. Universidad Nacional de Cuyo. Mendoza. Argentina. 55(2): 76-84. DOI:
https://doi.org/10.48162/rev.39.110
92.
VOSviewer version 1.6.17. 2023. Centre for Science and Technology Studies,
Leiden University, The Netherlands. https://www.vosviewer.com (Accessed June
2023).
93.
Yamada, T.; Ichihara, Y.; Hori, K. 2003. Defense responses of oak trees against
the fungus Raffaelea quercivora vectored by the ambrosia beetle Platypus
quercivorus. Proceedings IUFRO Kanazawa Forest insect population dynamics
and host influences. Kanazawa University, Kanazawa. 132-135 p.
94.
Yun, Y. H.; Suh, D. Y.; Yoo, H. D.; Oh, M. H.; Kim, S. H. 2015. Yeast
associated with the ambrosia beetle, Platypus koryoensis, the pest of
oak trees in Korea. Mycobiology. 43(4): 458-466. https://
doi.org/10.5941/MYCO.2015.43.4.458
95.
Zanuncio, J. C.; Sossai, M. F.; Couto, L.; Pinto, R. 200. Occurrence of Euplatypus
parallelus, Euplatypus sp. (col.: Euplatypodidae) and Xyleborus
affinis (col.: Scolytidae) in Pinus sp. in Ribas do Rio Pardo, Mato
Grosso do Sul, Brazil. Revista Árvore. 26: 387-389. https://doi.org/10.1590/
S0100-67622002000300015
Supplemmentary
material