Revista de la Facultad de Ciencias Agrarias. Universidad Nacional de Cuyo. Tomo 57(1). ISSN (en línea) 1853-8665. Año 2025.

Original article

 

Nutritional and morpho-anatomical characterization of Phyllostachys aurea (Poaceae, Bambusoideae, Bambuseae) foliage for Argentine livestock systems

Caracterización nutricional y morfo-anatómica del follaje de Phyllostachys aurea (Poaceae, Bambusoideae, Bambuseae) para sistemas ganaderos en Argentina

 

Marisa Wawrzkiewicz1*,

María Gabriela Fernández Pepi1,

Matías Osvaldo Buzzo1, 2,

Alejandro Fabián Zucol3, 4,

Andrea Susana Vega2, 4

 

1 Universidad de Buenos Aires. Facultad de Agronomía. Dpto. de Producción Animal. Cátedra de Nutrición Animal Av. San Martín 4453. C1417DSE. Buenos Aires. Argentina.

2 Universidad de Buenos Aires. Facultad de Agronomía. Dpto. de Recursos Naturales y Ambiente. Cátedra de Botánica General.

3 Laboratorio de Paleobotánica. CICYTTP (CONICET/Prov. E.R./UADER). España 149. Diamante (E3105BWA). Entre Ríos. Argentina.

4 ConsejoNacional de Investigaciones Científicas y Técnicas (CONICET). Buenos Aires. Argentina.

 

* wawrzkie@agro.uba.ar

 

Abstract

Bamboo cultivation in Argentina could represent a major economic activity if its various applications were revealed. This study characterized the anatomy and micromorphology of leaf blades by optical and scanning electron microscopes. Foliage leaves presented predominant parenchyma and scarce sclerenchyma. Foliage chemical and biological composition were analyzed in 3 populations of P. aurea sampled in two contrasting seasons of the year. The six samples evaluated showed 13% protein, adequate for ruminant feed. Neutral detergent fiber (aNDFom) was approximately 60% DM, a probable limiting factor for consumption. Significant differences in ADFom (acid detergent fiber) and ADLom (acid detergent lignin) favored spring results, with lower values than winter results. The presence of silica in different cell types could limit digestion. Fermentation kinetics indicated that dry matter digestibility is close to 50%, and higher in spring given lower amounts of indigestible components. In addition, all samples analyzed had a low content of immediately soluble material and a high content of potentially fermentable insoluble material. Anatomy and chemical-nutritional characterization allow P. aurea foliage to be considered in ruminant feeding.

Keywords: woody bamboo, nutritional value, leaf anatomy and morphology, ruminant feed

 

Resumen

El cultivo de los bambúes en la Argentina no ha alcanzado la relevancia merecida, pudiendo representar un valor económico más importante si se hicieran conocer sus diversas aplicaciones. En el presente trabajo, se caracterizó la anatomía y micromorfología de las láminas mediante microscopio óptico y microscopio electrónico de barrido. Se analizó la composición química y biológica del follaje en 3 poblaciones de P. aurea muestreadas en dos estaciones contrastantes del año. Las hojas del follaje presentaron una predominancia de tejido parenquimático sobre el esclerénquima, el cual fue escaso. La presencia de sílice en diferentes tipos celulares podría limitar la digestión. El promedio de proteína bruta fue 13% para las seis muestras analizadas y resulta aceptable para alimentación de rumiantes en mantenimiento. A su vez, se observó un contenido de aFDNmo (Fibra en detergente neutro) del 60%bs, lo cual puede ser limitante para el consumo. Se identificó una diferencia signifi­cativa en FDAmo (Fibra en detergente ácido) y LDA mo (Lignina en detergente ácido) entre invierno y primavera, favorable a la primavera con menores valores de dichos analitos. La cinética de fermentación indicó que la digestibilidad de la materia seca es cercana al 50%, siendo mayor en primavera dada la menor cantidad de componentes indigestibles. Además, para todas las muestras analizadas, el contenido de material inmediatamente soluble fue bajo, mientras que el material insoluble potencialmente fermentable fue elevado. Los resul­tados del análisis anatómico, complementado con la caracterización químico nutricional, permiten considerar al follaje de P. aurea en la alimentación de rumiantes.

Palabras clave: bambú leñoso, valor nutricional, anatomía y morfología de las hojas, alimentación para rumiantes

 

 

Introduction

 

 

The millennial cultivation of woody bamboo in Southeast Asia has recently gained attention in some tropical and subtropical countries of America (e.g. Colombia, Ecuador, Bolivia, Brazil and Chile (Londoño, 2009). Parodi (1943) stated that bamboo cultivation in Argentina had not reached its productive and economic potential. Its development should be encouraged by revealing its various applications. Woody bamboo provides human feed (24), and materials for utensils, cosmetic products, and crafts (22, 28, 30). Other uses are related to forage, paper pulp, fibers, biochar and pyrolysis compounds (1, 2, 3, 10).

Woody bamboo has rapid vegetative growth from vigorous rhizomes (27). Clumps can be used after 3 to 4 years of implantation. In addition to high biomass production, wide adaptability and evergreen leaves make them potential candidates in forage production (40). After rational culm cutting, bamboo gives annual harvests for 30 to 120 years, depending on the species (17, 18). The vegetative growth phase of Phyllostachys aurea Carrière ex Rivière & C. Rivière lasts 15 to 30 years, followed by flowering (30, 37) with no clump death. In Argentina, this exotic species is cultivated for ornamental purposes and its culms are used in construction and crafts, while shoots are edible (39, 48). Bamboo foliage is an alternative forage for domestic cattle. However, information on its chemical-nutritional composition as feed for ruminants is scarce (29). Other countries have identified several genotypes, growing sites, and seasons for forage variability (6, 34, 40, 47). Biomass production occurs in the temperate and rainy season, with growth impeded in winter, under 10°C (19).

Panizzo et al. (2017) nutritionally evaluated the foliage of the native woody bamboo Guadua chacoensis (Rojas Acosta) Londoño & P. M. Peterson and suggested its use as grazing supplement. In southern Argentina, Chusquea culeou E. Desv. (“caña colihue”) constitutes the main winter forage for bovine diet while other grasses remain covered in snow (25). We aimed to nutritionally and morpho-anatomically characterize P. aurea foliage for ruminant feed.

 

 

Materials and methods

 

 

Selection and collection of material

 

 

We used foliage leaves from 3 populations of the woody bamboo P. aurea: Lucien Hauman (S: 34°35’; E: 58°28’), Arturo Ragonese (S: 34°36’; E: 58°40’) Botanical Gardens and wild bamboo from Buenos Aires Delta (S: 34°24’; E: 58°33’). We sampled in two contrasting production seasons, spring (October 2017) and winter (July 2018). Nine culms were harvested at each location (i.e. 3 culms × 3 bamboo sites per harvest). A pool of foliage leaves was used in nutritional characterization of each population. Additionally, segments of the middle portion of blades were selected for anatomical and micromorphological studies.

The climate was humid temperate (figure 1) (20). Monthly rainfall and mean temperature did not restrict clumps growth of P. aurea. However, summer in 2018 was drier with rains accumulated in May and June.

 

Figure 1. Average temperatures and cumulated rainfall during the months before Phyllostachys aurea foliage harvest (20); and growth base temperature of bamboo species according to Halvorson et al. (2010).

Figura 1. Temperaturas promedio y precipitaciones acumuladas durante los meses antes de la cosecha del follaje de Phyllostachys aurea (20) y temperatura base de crecimiento de especies de bambú según Halvorson et al. (2010).

 

 

Morphological and anatomical studies

 

 

The species’ growth habit and leaf size, consistency, and indumentum followed McClure (1966) and Judziewicz et al. (1999) terminology. Foliage leaf blades collected in spring were dehydrated in alcohol series and embedded in paraffin following traditional anatomical techniques (12). Twenty μm-thick sections were cut with a rotary microtome and stained with safranine-Fast green. The following anatomical traits were considered: midrib and keel (position, vascular bundles, adaxial and abaxial sclerenchyma), abaxial and adaxial epidermis, bulliform cells, arm cells and intercellular spaces [sometimes referred to as “fusoid cells” (42), described in accordance to Ellis (1976, 1979) and Clark (2005). Observations were made with a Nikon® Microphot FXA optical microscope (Tochigi, Japan). Blade micromorphology was studied with a Scanning Electron Microscope (SEM, Phillips XL 30 Microscope (Phillips, The Netherlands). To describe abaxial and adaxial epidermal traits, small blade fragments were cleaned in xylene for 1.5 h with an ultrasonic cleaner (Cleanson, model CS 1106, Argentina). The material was air-dried, mounted, and coated with a gold-palladium (40%-60%) alloy by a Thermo VGScientific, then observed using a Phillips XL 30 Scanning Electron Microscope (MACN-CONICET, Argentina). Papillae pattern in long cells follows (49). Foliar anatomy and micromorphology related content of sclerenchyma, silica cells, macro and micro hairs, prickle and hooks, with possible forage acceptability. To quantify phytoliths and describe their association in each period and locality, articulated (i.e., more than two elements) and non-articulated elements (i.e.; a single element per morphotype), were considered (15). Morphotype description involved an ad hoc classification based on the proposals of Neumann et al. (2019).

 

 

Chemical-nutritional evaluation

 

 

Determinations included: dry matter (DM) by oven-drying at 105°C, ashes by incineration at 550°C (Cen; AOAC, 1990, No. 942.05), crude protein (CP; AOAC, 1990, No. 984.15), neutral and acid detergent fibers (42) using α-amylase and ash free (aNDFom and aADFom, respectively), and ash free acid detergent lignin (ADLom). Silica was determined by calcination technique (Si; Labouriau, 1983).

The in vitro evaluation of gas production (GP) followed the recommendations of Wawrzkiewicz et al. (2005). Measurements were made at regular intervals (i.e. 2, 4, 6, 8, 12, 16, 20, 24, 36, 48, 60, and 72 h). In addition, samples were incubated for up to 48 h to recover undigested residues in ANKOM® F57 filter bags determining DM digestibility (DMDiv) and NDF (NDFDiv). Cumulative net gas production (CNGP) and digestibility were corrected for blank (i.e. bottles without substrate) and incubated dry matter.

GP kinetics were adjusted to the equation CNGP = a + b x (1 - e-ct) (35). CNGP (ml/g DM) was determined at 12, 24, 48 and 72 h, parameters a, b and c, maximum hourly rate of GP (RGPMax; ml/g DM.h) and the time at which it occurs (TRGPmax; h) and average rate gas production (RGPAv).

 

 

Statistical analysis

 

 

Comparisons were made between spring and winter considering the three populations as replicates. The data were analyzed with SAS® statistical program. Seasons were compared by a completely randomized one-way design, with no interactions. A Tukey test compared means at p < 0.05.

GP rates were compared via a model considering time (T) as a repeated measure and the interaction with season (S × T) with a completely randomized two-way design with interaction. A Tukey test compared means at p < 0.05.

 

 

Results

 

 

Morphological studies

 

 

The studied clumps were 2-9 m tall (figure 2A).

 

A: habit. B: young shoot. C: nodes and internodes of culm middle portion. D: basal nodes, internodes and foliage leaves. Scale bars: A: 2 m; B: 3 cm; C: 12 cm; D: 1.5 cm.

A: hábito. B: turión. C: nudos y entrenudos de la parte media de las cañas. D: nudos, entrenudos basales y hojas del follaje. Escalas: A: 2 m; B: 3 cm; C: 12 cm; D: 1,5 cm.

Figure 2 / Figura 2. Phyllostachys aurea.

 

Rhizome axillary buds formed edible shoots (figure 2B) and produced aerial culms. These were woody, hollow, 1-5 cm in diameter, with grooved internodes on the side of the bud, upper nodes spaced apart, and the lower ones asymmetric and proximate (figure 2C and figure 2D). Bamboos have culm leaves and foliage leaves. The formers have a protective function (figure 2B) and at maturity are deciduous, constituting abundant litter on the soil surface. Foliage leaves are photosynthetic and have perennial lanceolate leaf blades, 5-16 × 1-2 cm (figure 2D).

 

 

Anatomical studies

 

 

In cross-section, foliage leaf blades present characteristic C3 anatomy. Well-developed midrib, keel projecting abaxially, with a first-order vascular bundle surrounded by a double sheath consisting of an outer parenchyma sheath and inner mestome sheath, locked towards both surfaces (figure 3A).

 

A: keel. B: arm. C: margin. ad: adaxial epidermis; ab: abaxial epidermis; bc: bulliform cells; ch: chlorenchyma; ms: mestome sheath; ps: parenchyma sheath; sc: sclerenchyma; sfc: spaces between fusoid cells; vb: vascular bundle. Scale bars: 100 μm.

A: costilla central. B: ala. C: margen. ad: epidermis adaxial; ab: epidermis abaxial; bc: células buliformes; ch: clorénquima; ms: vaina mestomática; ps: vaina parenquimática; sc: esclerénquima; sfc: espacios entre células fusoides; vb: haz vascular. Escalas: 100 μm.

Figure 3. Foliage leaf blade cross-section in Phyllostachys aurea.

Figura 3. Lámina de Phyllostachys aurea en transcorte.

 

The adaxial epidermis exhibited a single layer of smooth-walled cells and groups of fan-shaped bulliform cells. The abaxial epidermis was papillose and formed by various cell types (i.e., long cells, suberous cells, silica cells, and hooks, (figure 3A, 3B and 3C).

Chlorenchyma was diffuse and exhibited large intercellular spaces between fusoid cells, and on both sides of the vascular bundles in contact with parenchyma sheath. Arm cells are thin-walled and asymmetrically invaginated on the abaxial side. Scarce sclerenchyma. Girders associated with primary and secondary vascular bundles and strands at blade edges (figure 3C). In superficial view, leaf blades with SEM showed marginal hooks, smooth adaxial surface (figure 4A and 4B) and abaxial epidermis formed by a diversity of cell types among which were long cells with short papillae, stomatal complex slightly sunken with elongated papillae of the long contiguous cells overarching the stomata (subtype IV), silica cells, suberous cells, bicellular microhairs, hooks and prickles (figure 4C and 4D).

 

A-B: adaxial epidermis. C-D: abaxial epidermis. h: hook; lc: long cell; m: bicellular microhair; p: prickle; sc: stomatal complex; si: silica cell; su: suberous cell. Scale bars: A: 200 μm; B-D: 100 μm.

A-B, epidermis adaxial. C-D, epidermis abaxial. h, aguijón; lc, célula larga; m, micropelo bicelular; p, gancho; sc, aparato estomático; si, célula silícea; su, célula suberosa. Escalas: A, 200 μm; B-D, 100 μm.

Figure 4. Leaf blade of Phyllostachys aurea observed with a Scanning Electron Microscope.

Figura 4. Lámina de Phyllostachys aurea observada con Microscopio Electrónico de Barrido.

 

The phytolytic association of all analyzed materials presented a greater abundance of morphotypes accompanying leaf epidermis: silica cells, suberous cells, microhairs, hooks, prickles, and fan-shaped bulliform cells (figure 5A, 5B and 5C). To a lesser extent, prismatic morphotypes with wavy edges derived from long cells and short cylindrical elements (figure 5A and 5B).

 

A: Fragment of leaf blade adaxial epidermis, general view. B: Prickles, silica and suberous cells, detail. C: Fan-shaped bulliform cell. bc, bulliform cell; lc, long cell; p, prickle; si, silica cell; su, suberous cell. Scale bars: 50 μm.

A: Fragmento de epidermis adaxial de la lámina foliar, vista general; B: Detalle de aguijones, células silíceas y suberosas. C: Célula buliforme con forma de abanico. bc, célula buliforme; lc, célula larga; p, gancho; si, célula silícea; su, célula suberosa. Escala: 50 μm.

Figure 5 / Figura 5. Phyllostachys aurea.

 

 

Chemical-nutritional evaluation

 

 

P. aurea did not present differences between seasons in DM, CP and aNDFom. Averages exceeded 500 g/kg HM and 133 and 623 g/kg DM of CP and aNDFom, respectively (table 1). The inorganic fraction reached 193 g/kg DM while 81% of leaf blades constituted organic matter. Structural carbohydrates predominated with a low concentration of water-soluble non-structural carbohydrates (i.e. 623 and 26 g/kg DM, aNDFom and WSC, respectively) and moderate CP contents (table 1). The high silica content (i.e. 82% of total ash) suggests the presence of indigestible material and lower organic matter for animal feed.

 

Table 1. Chemical composition of P. aurea leaf blades in winter and spring.

Tabla 1. Composición química de láminas de P. aurea en dos épocas del año.

DM: dry matter; aNDFom: insoluble fiber in neutral detergent with α-amylase and free of ash; ADFom: ash-free acid detergent fiber insoluble fiber; ADLom: lignin in acid detergent in sulfuric acid and free of ashes; WSC: water-soluble carbohydrates; SEmean: standard error of the mean. Data are expressed in g/kg DM, unless indicated.

MS: materia seca; aFDNmo: fibra insoluble en detergente neutro con α-amilasa y libre de cenizas; FDAmo: fibra insoluble en fibra detergente ácida sin cenizas; LDAmo: lignina en detergente ácido en ácido sulfúrico y libre de cenizas; CS: carbohidratos solubles en agua; EEmedia: error estándar de la media. Los datos se encuentran expresados en g/kg MS, excepto que se indique lo contrario.

 

Phyllostachys aurea presented lower moisture content and higher concentration of ADFom and ADLom in winter than in spring, with increases of 7, 6 and 57% (P < 0.05), respectively (table 1). ADLom accumulation in the cell wall of winter leaf blades coincides with a 9% decrease in DMDin in winter compared to summer harvest (P < 0.05; table 2).

 

Table 2. In vitro nutritional evaluation of P. aurea leaf blades in winter and spring.

Tabla 2. Evaluación nutricional in vitro para dos estaciones del año de láminas de P. aurea.

SEmean: mean standard error; DMD, dry matter digestibility; NDFD: insoluble fiber in neutral detergent digestibility; RGPMax: maximum rate gas production; RGPAv, average rate gas production; a: GP of soluble fraction; b: GP of potentially degradable fraction; c: b degradation rate (CNGP = a + b x (1 - e-ct); Ørskov and McDonald, (1979). Digestibility and kinetics of gas production.

EEmedia: error estándar de la media; DMS: digestibilidad de la materia seca; DFDN: digestibilidad de la fibra insoluble en detergente neutro; TPGMax: tasa máxima de producción de gas; TPGProm: tasa promedio de producción de gas; a: PG de fracción soluble; b: PG de fracción potencialmente degradable; c: tasa de degradación de b (PGNA = a + b x (1 - e-ct); Ørskov y McDonald, (1979). Digestibilidad y cinética de producción de gas.

 

However, increases in ADF and ADL did not translate into statistically significant changes in IVNDF (p = 0.16), possibly given the greater SEmean magnitude concerning DMDiv (9.1 and 21.5 SEmean for DMDiv and NDFDiv, respectively). Additionally, digestibility determined at 48 h, corresponding to potential values, could promote difference fading. P. aurea high cell wall content and greater winter lignification promoted digestibility not exceeding 54% and 36% for DM and aNDFom, respectively.

Leaf blade CP content was slightly below the threshold (13%DM) recommended for the ruminant diet. Moreover, since average soluble carbohydrates were 26 g/kg DM and aNDFom was over 600 g/kg DM, P. aurea foliage can be classified as medium-quality feed.

GP kinetics coincided with that described for ADFom, ADLom and digestibilities, being RGPAv 1.8 times higher in spring and 1.7 in the PGAN at 24, 48 and 72 h, compared to winter (table 2; P < 0.05). This could be due to 36% less lignin of summer leaf blades, and 89% more organic matter not associated with the cell wall (i.e. 1000 - (Ash + CP + aNDFom) = 68 vs 36 g/kg DM; table 1). This hypothesis was supported by the greater DMDiv, although no significant differences were detected for DNFDiv.

Although the c rate was higher in spring leaf blades, the adjusted rate was 39% lower than in winter (i.e. 0.011 and 0.018 h-1, respectively; table 2; P = 0.047). The model describing GP kinetics may overestimate c when the curve does not reach the plateau (figure 6). However, spring foliage showed GP net rates of 3.2 fold and twice higher at hour 1 and 18, respectively (i.e. E × T; P = 0.034; figure 6). In all cases, TRGPmax was 3 hours after incubation. Higher GP rates at 1 and 3 hours could be due to WSC fermentation, while the later reduced rate is given by the lower availability of cell-wall carbon skeletons.

 

Figure 6. Cumulative net gas production (ml/g DM incubated) as a function of incubation hours of P. aurea leaf blades in spring and winter.

Figura 6. Producción de gas acumulada neta (ml/g MS incubada) en función de las horas de incubación de las láminas de P. aurea en dos estaciones del año.

 

 

Discussion

 

 

Morpho-anatomically, P. aurea foliage leaves presented predominant parenchyma and scarce sclerenchyma, desirable traits for forage use. As foliage matures, silica is deposited in bulliform cells, microhairs, hooks, and prickles, and to a lesser extent in suberous, long, and subsidiary cells in the stomatal complex (50). This study coincides with our anatomical and nutritional results showing that silica in different cell types could limit digestion. Silica in epidermis, trichomes, cell walls or lumen of grasses acts as a structural inhibitor of microbial digestion leading to lower acceptability and DMD (26). Thus, low DMDiv and NDFDiv could be explained by high epidermal Si contents preventing wall enzymatic degradation.

Chemical-nutritional composition of P. aurea leaf blades was statistically different between spring and winter harvests, as previously found (9, 19, 47). However, these differences did not modify productive implications in ruminant feeding, describing a forage of medium to low nutritional value (i.e. CP,133; aDFNom, 623; ADFom, 290; ADLom, 57; DMDiv, 520; NDFDiv, 338 g/kg DM). Other authors reported similar results (4, 40) and Bhardwaj et al. (2019) studying Jersey cows, characterized P. aurea with lower palatability and nutritional value than other bamboos like Dendrocalamus hamiltonii Nees & Arn. ex Munro, D. asper (Schult. & Schult. f.) Backer ex K. Heyne, Melocanna baccifera (Roxb.) Kurz, Phyllostachys bambusoides Siebold & Zucc. and P. pubescens (Pradelle) Mazel ex J. Houz. In contrast, Panizzo et al. (2017) described Guadua chacoensis leaf blades as better nutritional forage, with 220 g CP/kg DM, 541 g aNDFom/kg DM and 64% degradability at 48 hours.

Asaolu et al. (2010) and Halvorson et al. (2010) mentioned that bamboo is suitable for animals under maintenance conditions. The advantage of P. aurea is that leaf foliage blades are perennial and available when other forage species become scarce (4, 8, 9, 34). Mekuriaw et al. (2011), documented using bamboo foliage as feed for cattle, sheep, goats, and chickens in Ethiopia. In addition, our average aNDFmo content of 623 g/kg DM (table 1) could limit dry matter intake as for other forages (i.e., aNDFom > 600 g/kg DM; Mertens, 1973). Compared to other forage species, P. aurea low GP and CNGP rates suggest lower rumen fermentation and a consequent negative effect on potential consumption (16, 45). However, its CP content over 120 g/kg DM would not limit rumen digestion or requirements of ruminant categories in maintenance (7).

P. aurea foliage presented lower nutritional value than most C3 grasses and legumes grown in the temperate region of Argentina, both fresh and hayed or ensiled (i.e., oats, barley, fescue, ryegrass, red clover and alfalfa; Jaurena and Danelón, 2006; Wawrzkiewicz et al., 2019). On the other hand, compared with C4 (i.e., rhodes grass, gatton panic, honey grass; Fernández Pepi et al., 2018) grasses, bamboo contributed more CP and a similar or lower cell wall content. For this reason, P. aurea would be an alternative to C4 grasses, given its constant biomass production, nutritional quality and availability in winter or dry seasons.

Yayota et al. (2009) mention that low nutritional quality of bamboo cannot be completely explained by cell-wall quantity and composition. Factors like tannins or Si hinder microbiologic accessibility, slowing digestion (46).

Our results evidence foliar homogeneity of P. aurea throughout the year, for the temperate region of Argentina, and strong environmental adaptability while keeping stable chemical-nutritional characteristics. This allows considering P. aurea as an ingredient for ruminant supplementation in times of forage scarcity, increasing effective fiber intake. The use of foliage leaves, otherwise discarded after culms are used in construction and crafts, transforming a byproduct into an additional source of feed for ruminants.

 

 

Conclusions

 

 

Phyllostachys aurea presented morphological characteristics, growth habit, propagation form and vegetative cycle allowing high capacity for establishment and development in diverse environments. The C3 leaf anatomy with abundant parenchyma and scarce sclerenchyma along with its chemical-nutritional composition suggest its value as feed for ruminants. Although cell wall content estimated as NDF limits potential consumption, bamboo could be used as supplement in unfavorable times and ensure fiber contribution. Finally, P. aurea presents homogeneous traits throughout seasons and sites (low phenotypic plasticity) constituting a food source throughout the year.

 

Acknowledgments

UBACyT 20020190100206BA Project.

To the directors and staff of Lucien Hauman (FAUBA) and Arturo Ragonese (INTA Castelar) Botanical Gardens, and to Mr. Diego Regnicoli (Delta del Tigre).

 

References

1. Alchouron, J.; Navarathna, C.; Chludil, H. D.; Dewage, N. B.; Perez, F.; Hassan, E. B.; Pittman Jr., C. U.; Vega, A. S.; Mlsna, T. E. 2020. Assessing South American Guadua chacoensis bamboo biochar and Fe3O4 nanoparticle dispersed analogues for aqueous arsenic (V) remediation. Science of the Total Environment. 706: 135943. https://doi.org/10.1016/j.scitotenv.2019.135943

2. Alchouron, J.; Navarathna, C.; Rodrigo, P. M.; Snyder, A.; Chludil, H. D.; Vega, A. S.; Bosi, G.; Perez, F.; Mohan, D.; Pittman Jr., C. U.; Mlsna, T. E. 2021. Household arsenic contaminated water treatment employing iron oxide/bamboo biochar composite: An approach to technology transfer. Journal of Colloid and Interface Science. 587: 767-779. https://doi.org/10.1016/j. jcis.2020.11.036

3. Alchouron, J.; Bursztyn Fuentes, A. L.; Musser, A.; Vega, A. S.; Mohan, D.; Pittman Jr., C. U.; Mlsna, T.; Navarathna, C. 2022. Arsenic removal from household drinking water utilizing biochar and biochar composites: a focus on scale up. In: Mohan, D.; Pittman Jr., C. U.; Mlsna, T. (Eds.). Sustainable biochar for water and wastewater treatment. Netherlands. Elsevier. 277-320.

4. Andriarimalala, J. H.; Kpomasse, C. C.; Salgado, P.; Ralisoa, N.; Durai, J. 2019. Nutritional potential of bamboo leaves for feeding dairy cattle. Pesquisa Agropecuária Tropical. V. 49: e54370. https://doi.org/10.1590/1983-40632019v4954370

5. AOAC. International Association of Official Analytical Chemists. 1990. Official Methods of Analysis. Arlington.

6. Asaolu, V. O.; Odeyinka, S. M.; Akinbamijo, O. O.; Sodeinde, F. G. 2010. Effects of moringa and bamboo leaves on groundnut hay utilization by West African Dwarf goats. Livestock Research for Rural Development. Volume 22, Article #12 http://www.lrrd.org/lrrd22/1/asao22012. htm

7. Astibia, O. R.; Cangiano, C. A.; Cocimano, M. R.; Santini, F. J. 1984. Utilización del nitrógeno por el rumiante. Revista Argentina de Producción Animal. 4(4): 373-384.

8. Bhandari, M.; Kaushal, R.; Banik, R. L.; Tewari, S. K. 2015. Genetic evaluation of nutritional and forage quality of different bamboo species. Indian Forester. 141(3): 265-274.

9. Bhardwaj, D. R.; Sharma, P.; Bishist, R.; Navale, M. R.; Kaushal, R. 2019. Nutritive value of introduced bamboo species in the northwestern Himalayas, India. Journal of Forestry Research. 30(6): 2051-2060. https://doi.org/10.1007/s11676-018-0750-2

10. Campos Roasio, J.; Peñaloza Wagenknecht, R.; Kahler González, C.; Poblete W. H.; Cabrera Perramón, J. 2003. Bambú en Chile. Parte 1. Corporación de Investigación Tecnológica de Chile, Universidad Austral de Chile, FONDEF. Santiago, Chile. 143 p. https://doi. org/10.52904/20.500.12220/690

11. Clark, L. 2005. Bamboo biodiversity. Iowa State University. https://www.eeob.iastate.edu/ research/bamboo/index.html

12. D´Ambrogio de Argüeso. 1986. Manual de técnicas en histología vegetal. Hemisferio Sur. Buenos Aires. 83 p.

13. Ellis, R. P. 1976. A procedure for standardizing comparative leaf anatomy in the Poaceae. I. The leaf-slide as viewed in transverse section. Bothalia. 12: 65-109.

14. Ellis, R. P. 1979. A procedure for standardizing comparative leaf anatomy in the Poaceae. II. The epidermis as seen in surface view. Bothalia. 12: 641-671.

15. Fernández Pepi, M. G. 2013. Estudios fitolíticos de las comunidades vegetales del ecotono fueguino como una herramienta para reconocer sus variaciones de composición en el pasado reciente (Tesis Doctoral). Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Argentina.

16. Fernández Pepi, M. G.; Todarello, M. (ex-aequo); Schrauf, G.; Wawrzkiewicz, M; Jaurena, G. 2018. Variación de la calidad forrajera asociada a eventos transgénicos de Paspalum dilatatum Poir. Revista Argentina de Producción Animal. 37 (Supl. 1): 313.

17. Guerreiro, C. 2014. Flowering cycles of woody bamboos native to southern South America. Journal of Plant Research. 127(2): 307-313. https://doi.org/10.1007/s10265-013-0593-z

18. Guerreiro C.; Vega, A. S. 2021. Bamboo flowering in South America: What the past tells about the future. p. 353-377. In: Ahmad, Z.; Ding, Y.; Shahzad, A. (Eds.). Biotechnological advances in bamboo. Singapore. Springer. https://doi.org/10.1007/978-981-16-1310-4_15

19. Halvorson, J. J.; Cassida, K. A.; Turner, K. E.; Belesky, D. P. 2010. Nutritive value of bamboo as browse for livestock. Renewable Agriculture and Food Systems. 26(02): 161-170. https://doi. org/10.1017/S1742170510000566

20. INTA. CIRN (Centro de Investigación en Recursos Naturales). Sistema de información y gestión agroecológica. http://siga.inta.gob.ar/#/; consultado el 17 de marzo de 2023.

21. Jaurena, G.; Danelón, J. L. 2006. Tabla de composición de alimentos para rumiantes de la región Pampeana argentina. Buenos Aires, Hemisferio Sur. 62 p.

22. Judziewicz, E. J.; Clark, L. G.; Londoño, X.; Stern, M. J. 1999. American bamboos. Washington, D. C. Smithsonian Institution Press. 392 p.

23. Labouriau, L. G. 1983. Phytolith work in Brazil: a minireview. The Phytolitharien. 2: 6-10.

24. Londoño, X. 2009. Usos y potencialidades de los bambúes en Sur América. Botânica Brasileira: futuro e compromissos: 236-243. 60° Congreso Nacional de Botánica. Feira de Santana. BA. Brasil.

25. Martínez, L. V. 2008. Evaluación del espacio para la ganadería extensiva sustentable y la conservación del huemul (Hippocamelus bisulcus), en el Parque Nacional Los Alerces, provincia de Chubut, Argentina. APRONA Boletín Científico. 41: 45-67.

26. Massey, F. P.; Ennos, A. R.; Hartley, S. E. 2007. Herbivore specific induction of silica-based plant defences. Oecologia. 152(4): 677-683.

27. McClure, F. A. 1938. Notes on Bamboo culture with special reference to southern China. Reprint from the Hong Kong Naturalist. 9(1-2): 1-18.

28. McClure, F. A. 1953a. Bamboo as a building material. Contribution of the Foreign Agricultural Service, United States Department of Agriculture. Washington. D. C.

29. McClure, F. A. 1953b. Bamboo as a source of forage. Proceedings of the 8th Pacific Scientific Association Congress: 609-644.

30. McClure, F. A. 1966. The bamboos. A fresh perspective. Harvard University Press. Cambridge. Massachusetts.

31. Mekuriaw, Y.; Urge, M.; Animut, G. 2011. Role of indigenous Bamboo species (Yushania alpina and Oxytenanthera abyssinica) as ruminant feed in northwestern Ethiopia. Livestock Research for Rural Development. 23: Article #185. http://www. lrrd.org/lrrd23/9/meku23185. htm.htm

32. Mertens, D. R. 1973. Application of theoretical mathematical models to cell wall digestion and forage intake in ruminants. Ph.D. thesis. Cornell Univ. Ithaca. NY.

33. Neumann, K.; Strömberg, C. A. E.; Ball, T.; Albert, R. M.; Vrydaghs, L.; Cummings, L. S. 2019. International Code for Phytolith Nomenclature (ICPN) 2.0. Annals of Botany. 124(2): 189-199.

34. Ocheja, J. O.; Ayoade, J. A.; Okwori, A. I.; Abu, A.; Oyibo, A. 2013. Nutritive quality of bamboo leaves as feed resource for herbivorous animals. Journal of Agricultural Production and Technology. 2(2): 61-65.

35. Ørskov, E. R.; McDonald, I. 1979. The estimation of protein degradability in the rumen from incubation measurements weighed according to rate of passage. Journal of Agricultural Science. 92: 499-503.

36. Panizzo, C. C.; Fernández, P. V.; Colombatto, D.; Ciancia, M.; Vega, A. S. 2017. Anatomy, nutritional value and cell wall chemical analysis of foliage leaves in Guadua chacoensis (Poaceae, Bambusoideae, Bambuseae), a promising source of forage. Journal of Science of Food and Agriculture. 97(4): 1349-1358. https://doi.org/10.1002/jsfa.7873

37. Parodi, L. R. 1937. La floración de Phyllostachys aurea en la Argentina. Revista Argentina de Agronomía. 4: 307-308.

38. Parodi, L. R. 1943. Los Bambúes cultivados en la Argentina. Revista Argentina de Agronomía. 10(2): 89-110.

39. Rúgolo, Z. E. 2016. Phyllostachys. In: Rúgolo, Z. E. (Ed.). Bambúes leñosos nativos y exóticos de la Argentina. Hurlingham, Ed. Trama. 160-166.

40. Sahoo, A.; Ogra, R. K.; Sood, A.; Ahuja, P. S. 2010. Nutritional evaluation of bamboo cultivars in sub- Himalayan region of India by chemical composition and in vitro ruminal fermentation. Grassland Science. 56: 116-125. https://doi.org/10.1111/j.1744-697X.2010.00183.x

41. Satya, S.; Bal, L. M.; Singhal, P.; Naik, S. N. 2010. Bamboo shoot processing: food quality and safety aspect (a review). Trends in Food Science and Technology. 21: 181-189. https://doi. org/10.1016/j.tifs.2009.11.002

42. Van Soest, P. J.; Robertson, J. B.; Lewis, B. A. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science. 74: 3583-3597.

43. Vega, A. S.; Castro, M. A.; Guerreiro, C. 2016. Ontogeny of fusoid cells in Guadua species (Poaceae, Bambusoideae, Bambuseae): evidence for transdifferentiation and possible functions. Flora. 222: 13-19.

44. Wawrzkiewicz, M.; Danelón, J. L.; Grigera, J. J. 2005. Desaparición in vitro de forraje ensilado sometido a distintos procesamientos de laboratorio. Archivos Latinoamericanos de Producción Animal. 13(4): 191-214.

45. Wawrzkiewicz, M.; Álvarez Ugarte, D. H.; Fernández Pepi, M. G.; Jaurena, G. 2019. Desaparición de sustrato, ambiente ruminal y producción de metano in vitro de dietas con heno y burlanda seca de maíz. 42° Congreso Argentino de Producción Animal (AAPA). Bahía Blanca, Argentina. 42 (Supl.1): 32.

46. Wilson, J. R. 1994. Cell wall characteristics in relation to forage digestion by rumiants. Journal of Agriculture Science. 122: 173182.

47. Yayota, M.; Karashima, J.; Kouketsu, T.; Nakano, M.; Ohtani, S. 2009. Seasonal changes in the digestion and passage rates of fresh dwarf bamboo (Pleioblastus argenteostriatus f. glaber) in sheep. Animal Feed Science and Technology. 149(1-2): 89-101. https://doi. org/10.1016/j. anifeedsci.2008.05.006

48. Zelaya Alvarez, V. M.; Fernández, P. V.; Vega, A. S.; Mantese, A. I.; Federico, A. A.; Ciancia, M. 2017. Glucuronoarabinoxylans as major cell walls polymers from young shoots of the woody bamboo Phyllostachys aurea. Carbohydrate Polymers. 167: 240-249. https://doi. org/10.1016/j.carbpol.2017.03.015

49. Zhang, Y. X.; Zeng, C. X.; Li, D. Z. 2014. Scanning electron microscopy of the leaf epidermis in Arundinarieae (Poaceae: Bambusoideae): evolutionary implications of selected micromorphological features. Botanical Journal of the Linnean Society. 176(1): 46-65.

50. Zucol, A. F.; Brea, M. 2005. Sistemática de fitolitos, pautas para un sistema clasificatorio. Un caso en estudio en la Formación Alvear (Pleistoceno inferior), Entre Ríos, Argentina. Ameghiniana. 42(4): 685-704.