Revista de la Facultad de Ciencias
Agrarias. Universidad Nacional de Cuyo. Tomo 56(2). ISSN (en línea) 1853-8665.
Año 2024.
Original article
In
vitro efficacy testing of citronella grass oil against Tritrichomonas
foetus trophozoites
Evaluación
in vitro de la eficacia del aceite de citronela contra trofozoítos de Tritrichomonas
foetus
María Rosana
Ramirez1,
Estefanía Sereno Bruno2,
Debora Manuale3,
Juan Carlos Yori3,
1Consejo Nacional de Investigaciones Científicas y Técnicas
(CONICET). Instituto Universitario de Ciencias de la Salud, Fundación H. A.
Barceló. Buenos Aires. Argentina.
2Universidad Nacional de La Pampa. Facultad de Ciencias
Naturales. Instituto de Ciencias de la Tierra y Ambientales de La Pampa.
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). La Pampa.
Argentina.
3Universidad Nacional del Litoral. Instituto de Investigaciones
en Catálisis y Petroquímica. Consejo Nacional de Investigaciones Científicas y
Técnicas (CONICET). Santa Fe. Argentina.
*jorgeoyhenart@gmail.com
Abstract
Tritrichomonas
foetus,
a sexually transmitted parasitic protozoan, causes abortion in cattle.
Nitroimidazoles, such as metronidazole, treat bovine trichomonosis, but their
use is precluded. Plant extracts might have antiparasitic effects. This study
aimed to assess Cymbopogon nardus oil activity against T. foetus as
an alternative to metronidazole. T. foetus trophozoites were incubated
in culture medium containing serial dilutions of C. nardus oil.
Cytotoxicity was assessed 24 hours later. C. nardus oil killed T.
foetus cells. Half maximal effective concentration (EC50) was 0.4 μg/mL.
These findings suggest that C. nardus oil could be exploited for
discovery and compound isolation of plant-derived phytopharmaceuticals for
bovine trichomoniasis and other protozoan diseases.
Keywords: disease, venereal,
trichomonas, trichomoniasis, antimicrobial, dose-response
Resumen
Tritrichomonas
foetus es un protozoo parásito de transmisión sexual que provoca
abortos en el ganado. Los nitroimidazoles, como el metronidazol, pueden ayudar
en el tratamiento de la tricomonosis bovina, pero no se aconseja su uso. Los
extractos de plantas pueden tener un efecto antiparasitario. El estudio actual
tuvo como objetivo evaluar la actividad del aceite de Cymbopogon nardus contra
T. fetus como alternativa al metronidazol. Se incubaron trofozoítos de T.
fetus en medio de cultivo con diluciones seriadas de aceite de C. nardus.
La citotoxicidad se evaluó a las 24 horas. El aceite de C. nardus mató
las células de T. fetus. La concentración efectiva media máxima (CE50)
fue de 0,4 μg/ml. Estos hallazgos sugieren que el aceite de C. nardus podría
servir para el descubrimiento y aislamiento de fitofármacos para el tratamiento
de la tricomoniasis bovina y de otras enfermedades protozoarias.
Palabras clave: enfermedad,
venérea, trichomonas, trichomoniasis, antimicrobiano, dosis-respuesta
Originales: Recepción: 19/02/2024 - Aceptación: 13/06/2024
Introduction
Tritrichomonas
foetus is a parasite protozoan that causes bovine trichomonosis (2). This venereal disease causes premature
abortion and extended intercalving seasons. Nitroimidazoles are antibiotics
used to treat infections such as trichomonosis (10).
However, strain resistance and potential toxicity to meat consumers limit their
use.
Bovine
trichomonosis vaccines are not available and culling TF-infected animals is
recommended. Between 2015 and 2019, more than 3,800 T. foetus-carrying
bulls were culled in the United States (11).
Every year in La Pampa, Argentina, more than 300 diagnosed bulls must be
slaughtered (13). So far, testing and
elimination programs have rarely succeeded in their purpose of eradicating T.
foetus from cattle populations (13, 16).
New therapies for T.
foetus-infected animals consider plant extracts as alternatives to
commercial drugs. Extracts obtained from black tea, green tea, grape and
pomegranate inhibit pathogenic trichomonads (9).
Among natural extracts, essential oils are commonly used in traditional
medicine and some studies have addressed their effect against protozoa (1, 5).
Citronella
essential oil (EO) is extracted from the perennial herb Cymbopogon nardus (7). C. nardus is cultivated in tropical
and subtropical regions, including northern Argentina. The oil has several
biological activities, including insect-repellent, fungicidal, and bactericidal
properties (7, 9, 12). To the best of our
knowledge, the anti-trichomonas activity of this compound has not yet been
investigated (4).
This study aimed to
investigate the efficacy of C. nardus essential oil against the parasite
T. foetus in vitro, in comparison with metronidazole. Increasing
concentrations of C. nardus essential oil should significantly decrease T.
foetus trophozoites viability.
Materials
and methods
Plant material was obtained from existing monoculture
plantations from El Soberbio, Misiones, Argentina (27°17’43.76” S, 54°11’46.84”
W). Approximately 1,000 g of aerial parts were hydrodistilled. The chemical
composition of C. nardus oil was determined by capillary gas
chromatography on a 2014 Shimadzu GC equipped with a FID detector and a
capillary column (30 m × 0.25 mm internal diameter) J&W INNOWax 19091
N-213. Nitrogen was used as carrier gas. Samples (1 μl) were diluted with
acetone and injected at a 50:1 ratio. Operating conditions considered oven
temperature maintained at 60°C for 8 min and gradually raised by 3°C per min,
reaching 180°C, and kept for 5 min. Temperature at injection and detector ports
was 250°C. C. nardus oil main components were citronellal (40.1%),
citronellol (12.7%) Geraniol (25.3%), limonene (3.7%), trans-PMD (3.6%),
cis-PMD (2.6%) and isopulegols (0.3%).
The clone T.
foetus B1 obtained from a cow with pyometra, was used for conducting
parasite-killing assays (14).
Trophozoites were maintained in trypticase-yeast-maltose (TYM) medium
supplemented with 1 g/L streptomycin, 1,000,000 IU/L
ampicillin and 10% v/v heat-inactivated horse serum. Cultures were maintained
at 37°C in sterile 2.0 mL tubes filled with media and tightly capped.
Subcultures were made in 2-3 days intervals maintaining cell concentrations
below 8 105 trophozoites/mL.
Pure cultures in
antibiotic-free medium were seeded at a density of 5.105 T. foetus cells/mL
in 10-fold triplicate serial dilutions containing C. nardus oil between
0-800 ug/mL or metronidazole (Sigma Aldrich, M1547) dilutions from 0 to 100
ug/mL. Vehicles and drugs diluted in water or 70% ethanol accounted for 1% of
final volume. Incubation proceeded for 24 h at 37°C under microaerophilic
conditions. All experiments were performed three times. Compound toxicity was
assessed by Trypan blue exclusion on hemocytometer slides. GRmetrics’
4-parameter non-linear regression model was used to calculate IC50 and EC50
values as well as to generate dose-response curves (3).
T. foetus growth rates were plotted against logarithmically transformed
drug concentrations.
Results
Figure
1 shows best-fitted dose-response curves depicting T. foetus B1
cells response to C. nardus oil and metronidazole control.
Untransformed
growth rate versus log-transformed concentration showing effects of C.
nardus oil compared to metronidazole. Standard curves were built with
Grmetrics. GR: growth rate.
Tasa
de crecimiento no transformada versus concentración logarítmica transformada
para mostrar el efecto del aceite en comparación con el metronidazol. Las
curvas estándar se construyeron con Grmetrics. GR: tasa de crecimiento.
Figure
1. Dose-response curve for Cymbopogon nardus oil
effect on Tritrichomonas foetus.
Figura
1. Curva dosis-respuesta del efecto del aceite de Cymbopogon
nardus sobre Tritrichomonas foetus.
Over 24 hours,
mock-treated cells doubled 4.6 times. At the same time, the vehicle (0.7%
ethanol) had no visible effect on cell division or morphology. In contrast,
treatment with metronidazole (positive kill control) produced a standard
S-shaped curve, indicating strain sensibility. The EC50 for metronidazole was
0.016 μg/mL (16 μM). The concentration at which relative cell count was 0.5 of
maximal value (IC50) was also 0.016 μg/mL (table 1).
Table 1. Cymbopogon
nardus oil inhibition values.
Tabla
1. Valores de inhibición del aceite de
Cymbopogon nardus.

r2 coefficient
of determination indicating goodness of fit; GR50, concentration at which the effect
reaches a growth rate value of 0.5 based on interpolation; EC50, the
concentration at which relative cell count was 0.5 of maximal values; IC50, the
concentration at half-maximal effect; h, Hill coefficient of the fitted
(traditional) dose-response curve and the p-value of a F-test comparing curve
fit to a horizontal line fit. Concentrations are expressed in ug/mL.
Se
indican: r2,
el coeficiente de determinación para indicar bondad de ajuste de la curva;
GR50, la concentración a la cual el efecto alcanzó un valor de tasa de
crecimiento de 0,5 basado en la interpolación de la curva ajustada; EC50, la
concentración a la que el recuento relativo de células fue 0,5 de los valores
máximos; IC50, la concentración a la mitad del efecto máximo; h, el coeficiente
de Hill de la curva dosis-respuesta ajustada (tradicional) y el valor p de una
prueba F que compara el ajuste de la curva con un ajuste de línea horizontal.
Las concentraciones se expresan en ug/mL.
C. nardus oil also exhibited dose-dependent
inhibition, with all cells killed after 24 hours at high oil concentrations.
The EC50 value for C. nardus oil was 0.391 μg/mL (table
1). Oil concentration required to achieve a growth rate of 0.5 was 0.65
μg/mL (table 1). Fitted curves explain over 95% of observed
variation (figure 1).
Discussion
Several plant
compounds have in vitro anti-trichomonal activity (6). Data presented here indicate that C.
nardus oil can kill T. foetus in a dose-dependent manner. C.
nardus oil could be used for local treatment. Additionally, C. nardus oil
could constitute a basic resourse for plant-derived drugs for protozoan
diseases. The main constituents of C. nardus oil (geranial, citronellol
and elemol) show activity against Trypanosome brucei (9). In addition, several components have been
found active against fungal strains (citronellal and linalool), Gram-positive
and Gram-negative bacterial species (elemol, citronellol, citronellal) (7, 8, 15).
Conclusion
C. nardus oil affects growth and viability of T.
foetus in vitro. C. nardus oil constitutes a useful resource for the
discovery of plant-derived drugs for treating bovine trichomonosis and other
protozoan diseases.
Acknowledgments
This work has been supported by PIP0833 and PIP0054 CONICET.
1. Bailén, M.;
Díaz-Castellanos, B. M.; Azami-Conesa, I.; Alonso Fernández, S.; Martínez-Díaz,
R. A.; Navarro-Rocha, J.; Gómez-Muñoz, M. T.; González-Coloma, A. 2022.
Anti-Trichomonas gallinae activity of essential oils and main compounds from
Lamiaceae and Asteraceae plants. Front. Vet. Sci. 9:981763. doi:
10.3389/fvets.2022.981763
2. BonDurant, R. H.
1997. Pathogenesis, diagnosis, and management of Trichomoniasis in cattle. Vet
Clin North Am Food Anim. Pract. 13(2): 345-61.
3. Clark, N.;
Hafner, M.; Kouril, M.; Muhlich, J.; Niepel, M.; Williams, E.; Sorger, P.;
Medvedovic, M. 2016. GRcalculator: an online tool for calculating and mining
drug response data. doi:10.6084/
m9.figshare.4244408.v1
4. Drapeau, J.;
Rossano, M.; Touraud, D.; Obermayr, U.; Geier, M.; Rose, A.; Kunz, W. 2011.
Green synthesis of para-Menthane-3,8-diol from Eucalyptus citriodora:
Application for repellent products. Chimie. 14. 629-635.
doi:10.1016/j.crci.2011.02.008
5. Friedman, M.;
Tam, C.; Cheng, L.; Land, K. M.2020. Anti-trichomonad activities of different
compounds from foods, marine products, and medicinal plants: a review. BMC
Complement. Med. Ther. 20:271 https://doi.org/10.1186/s12906-020-03061-9
6. Hashemi, N.;
Ommi, D.; Kheyri, P.; Khamesipour, F.; Setzer, W. N.; Benchimol, M. 2021. A
review study on the anti-trichomonas activities of medicinal plants. Int J
Parasitol Drugs Drug Resist. 15: 92-104. doi:
10.1016/j.ijpddr.2021.01.002
7. Kaur, H.; Bhardwaj, U.; Kaur, R. 2021. Cymbopogon nardus essential
oil: A comprehensive review on its chemistry and bioactivity. J. Essent. Oil
Res. 33: 205-220. DOI: 10.1080/10412905.2021.1871976
8. Kpoviessi, S.;
Bero, J.; Agbani, P.; Gbaguidi, F.; Kpadonou-Kpoviessi, B.; Sinsin, B.;
Accrombessi, G.; Frédérich, M.; Moudachirou, M.; Quetin-Leclercq, J. 2014.
Chemical composition, cytotoxicity and in vitro anti trypanosomal and
antiplasmodial activity of the essential oils of four Cymbopogon species from
Benin. J. Ethnopharmacol. 151(1): 652-659. https://doi.
org/10.1016/j.jep.2013.11.027
9. Liu, J.;
Kanetake, S.; Wu, Y-H.; Tam, C.; Cheng, L. W.; Land, K. M.; Friedman, M. 2016.
Anti-protozoal effects of the tomato tetrasaccharide glycoalkaloid tomatine and
the aglycone tomatidine on mucosal trichomonads. J. Agric. Food Chem. 64(46):
8806-10.
10. Love, D.; Fajt,
V. R.; Hairgrove, T.; Jones, M.; Thompson, J. A. 2017. Metronidazole for the
treatment of Tritrichomonas foetus in bulls. BMC Vet. Res. 13(1): 107. doi: 10.1186/s12917-017- 0999-2
11. Martin, K.;
Henderson, J.; Brewer, M. T. 2021. Bovine Trichomonosis cases in the United
States 2015–2019. Frontiers in Veterinary Science. 8-2021.
https://doi.org/10.3389/ fvets.2021.692199
12. Norhayati, I.;
Getha, K.; Azah, N.; Jahn, R. 2013. Chemical composition and in vitro antitrypanosomal
activity of fractions of essential oil from Cymbopogon nardus L. Trop.
Biomed. 30(1): 9-14.
13. Oyhenart, J.
2024. Positive cases of bovine genital campylobacteriosis and bovine
trichomonosis in the eradication program of La Pampa, Argentina: 2008–2021.
Trop Anim Health Prod 56: 96. https://doi.org/10.1007/s11250-024-03931-1
14. Oyhenart, J.;
Martínez, F.; Ramírez, R.; Fort, M.; Breccia, J. 2013. Loop mediated isothermal
amplification of 5.8S rDNA for specific detection of Tritrichomonas foetus.
Vet. Par. 193: 59-65. https://doi.org/10.1016/j.vetpar.2012.11.034
15. Qiuli, O. Y.;
Yangmei, L.; Okwong, R. O.; Miaoling, Z.; Xingfeng. S.; Nengguo, T. 2021.
Citronellal exerts its antifungal activity by targeting ergosterol biosynthesis
in Penicillium digitatum. J. Fungi. 7: 432.
https://doi.org/10.3390/jof7060432
16. Yao, C. 2021. Control and eradication of bovine
trichomonosis in Wyoming, USA by testing and culling positive bulls. Vet Res.
52(1): 129. doi: 10.1186/s13567-021-00996-w
Conflict of
interests
The authors declare that there is no conflict of interest.