Revista de la Facultad de Ciencias
Agrarias. Universidad Nacional de Cuyo. En prensa. ISSN (en línea) 1853-8665.
Original article
Critical
Point Analysis for Sustainable Management of Cydia pomonella (Lepidoptera:
Tortricidae) in Smallholder Walnut Farms of Catamarca, Argentina
Análisis
de Puntos Críticos en la Sustentabilidad del Manejo de Cydia pomonella (Lepidoptera:
Tortricidae) en Pequeñas Producciones Nogaleras de Catamarca, Argentina
María José Cavallo1,
Oscar Eduardo Romero4,
Braian Vladimir Sosa1,
Martin Sebastian Espinosa5, 6,
1Centro Regional de Energía y Ambiente para el Desarrollo
Sustentable (CONICET-UNCA). Laboratorio de Control Biológico y Biodiversidad de
Insectos. C. P. 4700. Prado 366. Catamarca. Argentina.
2Universidad Nacional de Tucumán. Facultad de Ciencias Naturales
e Instituto Miguel Lillo. Instituto de Investigaciones de Biodiversidad Argentina.
C. P. 4000. Miguel Lillo 251. Tucumán. Argentina.
3Universidad Nacional de Catamarca. Facultad de Ciencias
Agrarias. Cátedra Cultivos Industriales. Depto. Producción Vegetal. C. P. 4700.
Av. Belgrano 300. Catamarca. Argentina.
4Universidad Nacional de Catamarca. Facultad de Ciencias
Agrarias. Cátedra Climatología agrícola. Depto. Clima, Suelo y Riego.
Catamarca. Argentina.
5Universidad Nacional de Chilecito. Departamento de Ciencias
Básicas y Tecnológicas. C. P. 5360. 9 de Julio 22. Chilecito. La Rioja.
Argentina.
6Consejo Nacional de Investigaciones Científicas y Técnicas.
C1425FQB. Godoy Cruz 2290. Buenos Aires. Argentina.
Abstract
In Argentina, 80%
of walnut production is carried out by smallholder farms facing poor technology,
production constraints, and substantial economic losses due to pests like Cydia
pomonella (codling moth). We assessed sustainability risks linked to
phytosanitary management on small farms in the Ambato region of Catamarca,
Argentina. Our analysis included a “strong sustainability” framework with three
key dimensions: ecological, economic, and sociocultural. A total of 26
indicators were related to this species’ management. Using semi-structured
interviews, visual aids, and field surveys across seven farms, an overall
sustainability index of 1.521 was calculated, with 50% of the indicators
scoring below the established threshold (on a five-level sustainability scale,
the selected threshold was level two). The ecological dimension emerged as the
most sustainable. Limitations included absent systematic monitoring and
optimisation of treatment timing, solely with agrochemical control, weak
farmer-to-farmer collaboration, and insufficient training opportunities.
Cluster analysis revealed four distinct groups based on phytosanitary
practices. This study highlights critical intervention points and suggests
agroecological strategies to enhance sustainable pest management in smallholder
walnut systems.
Keywords: codling moth,
Phytosanitary management, sustainability, Juglans regia
Resumen
En Argentina, el
80% del sector nogalero está representado por pequeños productores, con bajo
nivel tecnológico, limitaciones en la producción y presencia de especies plaga
como Cydia pomonella (“carpocapsa”), entre otros. Se evaluaron los
riesgos a la sustentabilidad del manejo fitosanitario de C. pomonella en
minifundios de Ambato (Catamarca, Argentina), considerando tres dimensiones:
ecológica, económica y sociocultural, bajo un enfoque de sustentabilidad
fuerte. Se identificaron 26 indicadores relacionados con el manejo de esta
especie. Mediante encuestas semiestructuradas, cartillas visuales y
relevamientos en siete fincas, se determinó un Índice de sustentabilidad
general de 1.521, con el 50% de los indicadores por debajo del umbral
establecido (de una categorización de sustentabilidad según una escala de cinco
puntos, el valor umbral seleccionado fue de dos). La dimensión ecológica fue la
más destacada en términos de sustentabilidad. Las limitaciones encontradas en la
práctica fitosanitaria incluyeron la falta de monitoreo de C. pomonella que
definan momentos oportunos de control, el uso de agroquímicos como única
herramienta de control, ausencia de interacción entre productores y falta de
capacitaciones en fitosanidad. Mediante análisis de clúster se evidenciaron
cuatro grupos según sus prácticas fitosanitarias. Se detectaron puntos críticos
y propusieron herramientas para promover prácticas agroecológicas para un
manejo sustentable.
Palabras clave: carpocapsa, manejo
fitosanitario, sustentabilidad, Juglans regia
Originales: Recepción: 28/02/2025
- Aceptación: 21/07/2025
Introduction
Developing
sustainable agriculture requires long-term flow of goods and services to meet
nutritional, socio-economic, and cultural needs, within biophysical limits
defined by the natural system supporting production. Sustainability encompasses
multiple, interrelated objectives that demand multidisciplinary approaches (44, 50). Understanding sustainability enables
evaluating and mitigating production-based environmental impacts, while
accounting for market fluctuations and supply chain vulnerabilities (21). Sustainable systems must be productive,
stable, resilient, and adaptable, distributing costs and benefits equitably and
fostering autonomous decision-making among stakeholders (3).
Agricultural
landscapes are not isolated. Production units and the environment constitute a
continuous agroecosystem. Native vegetation refuges natural enemies of insect
pests, supporting biodiversity. Ecological services like biotic regulation,
nutrient cycling, and pollination must be managed to maintain a dynamic
equilibrium between native and introduced components (32). This management depends on farmers’
knowledge and decisions (49).
Walnuts (Juglans
regia L.) represent a major agricultural sector in Argentina. Catamarca
province ranks second in national walnut production, with 4063 hectares
cultivated and 2619.9 tonnes annually (47).
The sector comprises a range of production systems, from large-scale farms
(20%) to smallholder (80%) (29, 32, 37).
These last producers manage fewer than five hectares with limited technological
inputs and modest yields. Challenges such as water scarcity, labour shortage,
and high logistical costs hinder sustainable practices in the region. Changes
in organization of the productive sector related to financing and
self-management affect marketing (16).
One productivity
constraint is the codling moth (Cydia pomonella (Linnaeus, 1758);
Lepidoptera: Tortricidae), a major pest responsible for 40% to 60% yield losses
(14). Larvae penetrate fruit after
hatching, causing economic damage. Conventional management relies on
calendar-based applications of organophosphates and pyrethroids (8), which have led to pest resistance,
environmental and biodiversity degradation while risking human health (19). Alternative control strategies, including
mating disruption, biopesticides, and parasitoid-based biological control, have
not been widely adopted (10, 18, 25).
Transitioning
towards sustainable agriculture needs robust methodologies for sustainability
assessment. These assessments must be context-sensitive, cost-effective, and
capable of identifying critical constraints at different spatial scales (field,
farm, region). Since sustainability is a multidimensional concept, it is
summarized through indicators (43, 44).
In this way, subjective and objective indicators are measured, with the latter
recorded independently of what the farmer reports (e.g., vegetation
cover). Two main approaches characterize sustainability. Weak sustainability
allows substituting natural capital with human-made capital, while strong
sustainability sees both as complementary and irreplaceable (15, 21, 38, 43). This work adopted the strong
sustainability perspective.
In Catamarca,
previous research has addressed data on walnut varietals, types of farmers and
biological aspects of C. pomonella (16, 32,
39, 41). To date, one study has assessed sustainability of walnut
production, incorporating economic, ecological, and social dimensions within an
agroecological framework (24), but no
study has dealt with pest sustainable management. This study assessed the risks
to sustainable phytosanitary management of C. pomonella by smallholder
walnut farmers in Ambato (Catamarca). We employed a set of indicators and
semi-structured interviews to evaluate three sustainability dimensions. (a)
Ecological: Spontaneous vegetation within walnut crops supports diverse and
structurally complex habitats for natural enemies of C. pomonella. (b)
Economic: Financial losses from pest damage may exceed profits, compromising
economic viability. (c) Sociocultural: Farmers largely operate in isolation and
often lack knowledge about pest biology and management strategies.
This multidimensional
evaluation provides insights into opportunities and constraints for sustainable
pest management in smallholder agroecosystems and proposes future strategies
for ecological intensification and rural resilience.
Methodology
Study
Area
The study was conducted in the Ambato Department (28°10’14” S,
65°47’29” W) in Catamarca Province, Argentina, where seven smallholder walnut
farms were selected as observational units (figure 1). Farms
were chosen by considering average walnut production in the area and confirmed
presence of C. pomonella. These farms exhibit notable varietal
diversity, with predominant traditional ‘Criolla’ seed type and recently
introduced lateral-bearing cultivars like ‘Chandler’.
Figure
1. Study area. Walnut farms in Ambato,
Catamarca, Argentina.
Figura
1. Área de estudio. Fincas de
nogales en Ambato, Catamarca, Argentina.
Indicator
Development, Standardization, and Weighting
Indicators were developed following Sarandón
and Flores (2009). Table 1 shows eleven key variables
related to phytosanitary management of C. pomonella, each associated
with specific response indicators, yielding 26 sustainability indicators (Supplementary
Material 1). Each indicator was scored on a five-point ordinal scale,
ranging from 0 (least sustainable) to 4 (most sustainable), with 2 as
analytical threshold. Relative weights were assigned to each indicator based on
its perceived importance within the system. This weighting process was
conducted through expert consensus in our research team (Supplementary
Material 1).
Table 1. Composition
of the sustainability analysis of Cydia pomonella management in walnut
farms.
Tabla
1. Composición del análisis de
sustentabilidad del manejo de Cydia pomonella en fincas de nogales.

*
Details of each indicator and its categorization in Supplementary
Material 1.
*
Detalles de cada indicador y su categorización en Material
Suplementario 1.
Estimation
of Subjective Indicators in Economic and Sociocultural Dimensions
Categorical values
of subjective indicators were determined after individual semi-structured
interviews with the seven walnut producers between October 2023 and June 2024.
The questionnaire comprised 114 questions and was supplemented by two
illustrated booklets. These visual materials assessed farmers’ ability to
distinguish C. pomonella from other insects like Lepidoptera, Diptera,
and Coleoptera, including natural enemies (Supplementary
Material 2).
Estimation
of Objective Indicators in the Ecological Dimension
Field-based
ecological assessments were conducted on each farm. These included: (a)
Vegetation characterization: number of plant species, cultivated and
spontaneous, within each orchard and along field margins during autumn and
spring. Species identification was conducted using field guides and images.
Particular interest was given to Fabaceae, Asteraceae, and Apiaceae families,
known to enhance the presence of natural enemies of C. pomonella (34, 35). (b) Vegetation cover was
estimated using the square sampling method (33).
Five points per farm were randomly selected, corresponding to cardinal and
central sectors (M1: North; M2: East; M3: South; M4: West; M5: center). At each
point, 0.25 m² sampling squares were defined. Within these units, species were
recorded and vegetation cover was quantified. (c) Proximity to spontaneous
vegetation and habitat connectivity considered the distance from ten walnut
trees per farm, randomly selected, to the nearest patch of spontaneous
vegetation. Mean distance per farm was calculated.
Data Analysis
Each farm was
treated as an independent unit (20),
allowing for in-depth, contextual analysis and extrapolation to the broader
regional context. Five categorical sustainability levels assigned to each
response identified the most influential sustainability indicators as not
sustainable (0%, score 0), weak (25%, score 1), moderate (50%, score 2),
optimal (75%, score 3), and strongly sustainable (100%, score 4) (1). A weighted average per indicator was
calculated by combining farmer proportion providing each response with the
corresponding sustainability score (1, 44).
The resulting values were used to generate sustainability profiles by dimension
(ecological, economic, sociocultural) for each farm, and to calculate a General
Sustainability Index (GSI) for the study area. Farms scoring above the
threshold value of 2 were considered optimally sustainable. Equations for
indicator weighting, scoring, and index calculation are provided in Supplementary
Material 1. Finally, a multivariate cluster analysis (27) grouped farms according to shared indicator
profiles, eliminating variables with low discriminatory power. Correlations
among farm groups identified patterns of sustainability performance.
Results
and discussion
Ecological
Dimension. Indicator Variability and Biodiversity Management
Based on
farmer-reported data and field measurements, ecological indicators showed the
greatest variability among the three evaluated dimensions (figure
2, variables 1-11).
Figure
2. Percentage distribution of indicator sustainability
based on farmer responses (%). All indicators are related to Cydia pomonella
recognition and control.
Figura
2. Gráfico de distribución del porcentaje de
sustentabilidad de cada indicador considerando el porcentaje de respuestas de
los productores. Todos los indicadores están en función de Cydia pomonella,
su reconocimiento y control.
Ecological
diversity management revealed moderate to high habitat complexity (table
2). Vegetation cover across farms ranged from 45% to 95%, and mean distance
to the nearest spontaneous vegetation during spring-summer was under one meter.
A total of 29 plant species from 13 botanical families were identified across
the farms. However, only 12 of these species belonged to families previously
documented as favourable for natural enemies of C. pomonella (23) (table 2).
Table 2. Ecological
diversity on study farms.
Tabla
2. Diversidad ecológica en las fincas de estudio.

1.
Walnut. 2. Quince. 3. Peach. 4. Apple tree. 5. Pear tree. 6. Plum tree. 7. Fig
tree. 8. Alfalfa. 9. Almond tree. 10. Barley. 11. Sorghum. 12. Corn. 13.
Average percentage of vegetation cover on the farm. 14 Average distance from
the walnut tree to the nearest spontaneous vegetation. 15. Number of families.
16. Total number of species. 17. Number of species belonging to the families
Fabaceae, Asteraceae and Apiaceae: attractive to natural enemies (EN). 18.
Number of vegetation strata.
1.
Nogal. 2. Membrillo. 3. Durazno. 4. Manzano. 5. Peral. 6. Ciruelo. 7. Higo. 8.
Alfalfa. 9. Almendro. 10. Cebada. 11. Sorgo. 12. Maíz. 13. Promedio de
porcentaje de cobertura vegetal dentro de la finca. 14. Distancia promedio del
nogal a la vegetación espontánea más cercana. 15. Número de familias. 16.
Número de especies total. 17. Número de especies que pertenecen a las familias
Fabaceae, Asteraceae y Apiaceae: atractivos para enemigos naturales (EN). 18.
Cantidad de estratos.
Notable species
included Convolvulus arvensis L. (bindweed), Aloysia gratissima G.
& H. (whitebrush), Taraxacum officinale L. (dandelion), Melilotus
albus M. (white sweet clover), and Ammi visnaga L. (toothpick
plant). Notably, plant spatial and temporal distributions do not result from
intentional management. Rather, they establish spontaneously, primarily along
farm boundaries, which may adjoin other orchards, natural landscapes, or, in
some cases, expanding urban zones.
Across farms, vegetation stratification ranged from two to four
layers, suggesting a potentially favourable microhabitat structure for natural
enemy communities, enhancing biological control potential. Despite this, field
observations and expert communications (Engineers Romero and Barros, pers.
comm.) indicate low abundance and diversity of natural enemies in the study
area, including Goniozus legneri Gordh (Hymenoptera: Bethylidae), an
effective parasitoid of several lepidopteran pests, including C. pomonella (5, 10, 31). Several factors may account for this
discrepancy. Recent urban expansion in the Ambato Department may have
influenced these results (11). This area,
formerly dedicated to livestock production, has undergone changes that may have
negatively affected soil quality and reduced the availability of potential
refuges for natural enemies. The replacement of natural vegetation likely
eliminated important sources of food and shelter for beneficial fauna,
disrupting the natural landscape and ecological balance. Residual effects of agrochemicals
accumulated over recent decades, mainly pyrethroids used for C.
pomonella control, could also contribute to these outcomes (6). In this regard, Ferrero
and collaborators (2000) demonstrated the detrimental impact of organophosphates
and pyrethroids on G. legneri, reporting reductions in longevity,
oviposition capacity, and egg-laying size. Similarly, Leyton
(2023) documented the harmful effects of several insecticides (Bifenthrin,
Pirimicarb, Imidacloprid) on this parasitoid species. Without adequately
monitoring pest precise emergence, chemical treatments lose effectiveness,
often resulting in repeated applications. Such practices disturb ecosystem
balance, reduce functional biodiversity, and compromise long-term ecological
sustainability. Moreover, they may contribute to developing resistant pest
populations and pose risks to human health.
Walnuts were the primary crop across all farms, accompanied by
11 secondary species, including fruit and forage crops (table 2).
A common association was observed with Cydonia oblonga (quince), an
alternative host for C. pomonella, with important implications for
integrated pest management strategies. However, farmer perceptions of C.
oblonga varied. In this study producers generally regarded quince as a
low-priority crop, “not needing targeted control measures”. Some even suggested
it could constitute a trap distracting C. pomonella away from walnut
fruits. This contrasts with Rivero et al. (2012)
from Andalgalá (Catamarca), where farmers actively managed C. pomonella in
quince to prevent its migration into walnut orchards. These divergent
approaches highlight the need for context-specific education on host dynamics
and pest ecology.
The weakest
ecological sustainability indicator was absent C. pomonella monitoring,
essential for understanding population dynamics and their effects on crop
yield. Yet, extensive evidence supports the critical role of pest monitoring
combined with systematic data analysis, enhancing effectiveness and
sustainability of integrated pest management programs (12). Farmers reported not monitoring insects or
fruit damage, nor estimating number of damaged fruits per season (figure
2, indicators C10 and C11). This limits timely and effective control
strategies.
Economic
Dimension: Sustainability Constraints in C. pomonella Management
The economic
analysis revealed absent monitoring as a major limit for sustainable C.
pomonella management. No farmer reported investing in monitoring (figure 2, D12). As a result, chemical control remains
predominant across most farms, applied according to calendar schedules and
without rotation of active ingredients (figure 2, E13 and
E14). This facilitates the emergence of resistant pest populations, already
documented in fruit-producing regions like Alto Valle (Río Negro, Neuquén) (12, 48), Chile and South Africa (7, 46). The penetration of neonate C.
pomonella larvae into fruit makes post-infestation chemical treatments
ineffective. Consequently, pest control must be precisely timed. Monitoring
adult population and fruit damage, managing damage thresholds, and tracking
degree-day accumulation to anticipate pest emergence have proved most effective
(4, 22). However, government-led
phytosanitary campaigns often proceed without prior monitoring and on
broad-spectrum insecticides applied at high doses, further undermining
sustainability. Previous studies in the Andalgalá region have evaluated
insecticide use on walnut farms and emphasized the importance of reducing
environmental and worker exposure, rotating active ingredients with distinct
modes of action, and incorporating at least one compound that preserves
beneficial insect populations (8, 9).
Despite this, some farms in Ambato report no pest control, citing costly
supplies as primary barrier.
Economic losses
attributed to C. pomonella (figure 2, F15) are
approximately 20% for half of the producers, and between 20% and 50% for the
second half, consistent with Andalgalá (42).
Only one producer reported losses exceeding 80%. In apple production (Malus
domestica), a 1% fruit damage threshold per hectare has been established as
economic injury level (13). However, no
standardized threshold exists for walnuts. Preliminary research by our group
suggests a 4% fruit loss threshold, provided monitoring is conducted regularly
(Diez, pers. comm.). These thresholds imply that the sustainability assessment
scale used in this study should be adjusted to reflect crop-specific economic
realities more accurately, enhancing control relevance.
Alternative
cultural and biological strategies remain underutilized. While collecting and
destroying infested fruit (e.g., by burning) is recognized as a general
pest control practice (36), surveyed
farmers reported this approach primarily for land clearing. In addition, the
use of corrugated cardboard bands to trap diapausing larvae, a low-cost method
to reduce first-generation adult populations (4),
is neither considered. Biological inputs, such as C. pomonella granulovirus
(CpGV), have shown promising results among traditional growers in Pomán and
Andalgalá (40), not yet in Ambato.
Additional economic
indicators detected problems related to a lack of productive diversity (figure 2, G16 and G17). Most farms only sell peeled and shelled
walnuts in bulk, often at very low prices. Developing value-added products,
such as candied walnuts called “nueces confitadas”, walnut oil, or walnut
paste, enhances farm income and economic resilience. Similar marketing
innovations have been observed in other walnut-growing regions of Catamarca,
including Belén and Pomán (field interviews; Poncho Festival 2024, Catamarca).
Sociocultural
Dimension: Insights into Knowledge and Systemic Challenges
Interview data
revealed low sociocultural sustainability risk, as most farmers demonstrated
basic knowledge of C. pomonella biology and field behavior (figure
2, H18-H2; table 2). This knowledge is valuable, as
sustainable pest control requires understanding the pest’s life cycle and its
interaction with the host (2).
Participants identified the pest, recognized typical damage signs, and
estimated seasonal presence in their orchards. However, as already mentioned,
this knowledge is not consistently translated into practice (figure
2, D12, H21, K25). In this context, farmers are unwilling to invest in
traps and adopt a passive attitude, expecting the government to provide them.
Moreover, they tend to only visually assess crop damage, without conducting
actual counts that would evidence precise infestation levels. Additionally,
producers did not recognize natural enemies in the brochure (parasitoids and
predators). This result contrasts Rivero et al. (2012)
in Catamarca, where nearly one-third of the producers recognized parasitoids on
their farms.
Regarding
alternative host species, only three farmers could identify all potential hosts
of C. pomonella, and just one acknowledged the need to manage the pest
in those crops (figure 2, H20). Most producers named only one
or two hosts, primarily quince (C. oblonga), and believed that C.
pomonella affected only walnut trees. Parallel assessments conducted on the
same farms indicated that quince trees experienced an average fruit damage rate
of 7% during the 2023-2024 season, with peak damage observed in January and
February (Ing. Barros, pers. comm.). This gap between knowledge and reality may
be linked to limited training opportunities and weak communication between
farmers and agricultural institutions (figure 2, J23 and
J24). Previous studies have shown that workshops facilitated by technical
specialists can strengthen farmer networks and improve pest management outcomes
(26, 32).
These findings only
partially support our three hypotheses. Ecologically, although habitat
structure may favour biological control, actual abundance and diversity of
natural enemies seem insufficient. Economically, qualitative data suggest
moderate to high pest impact, to be confirmed through quantitative assessments.
Finally, socio-culturally, knowledge of the pest is not systematically applied
in management decisions. This study diagnoses key limitations in C.
pomonella control in Ambato, addressing a gap in the literature and laying
the basis for more comprehensive, sustainable pest management in smallholder
walnut systems.
Sustainability
The average General
Sustainability Index (ISg) across the evaluated farms was 1.521, under the
established threshold value of 2.0. C. pomonella management exhibited
the highest relative sustainability in the ecological dimension (1.663),
followed by the sociocultural (1.571) and economic (1.329) dimensions (table 3).
Table 3. Indicator
values in seven walnut farms in Ambato, Argentina, and general sustainability
conditions.
Tabla
3. Valores de los indicadores empleados en siete fincas
de Nogales, Ambato, Argentina y condiciones de sustentabilidad general.

1.
Walnut farms. A. On-farm diversity management. B. Spontaneous vegetation on
farm edges. C. Monitoring and regulation of C. pomonella. D. Economic
investment in C. pomonella regulation. E. Chemical control of C.
pomonella. F. Economic losses caused by C. pomonella. G. Production
marketing. H. Extent of farmer knowledge on C. pomonella, alternative
hosts and their regulation. I. Degree of knowledge of agrochemicals for the
control of C. pomonella. J. Social role of the farmer concerning C.
pomonella management. k. Extent of farmer knowledge on ecosystem services
for natural biological control of C. pomonella. 2. Results are averages
of the indicators constituting each variable. DE=Ecological Dimension. DK:
Economic Dimension. DSC: Socio-Cultural Dimension. ISg: General Sustainability
Index. Formula. Supplementary
material 1.
1.
Fincas de nogales. A. Manejo de la diversidad en la finca. B. Vegetación
espontánea en los bordes de la finca C. Monitoreo y regulación de C.
pomonella. D. Inversión económica en la regulación de C. pomonella E.
Control químico de C. pomonella. F. Pérdidas económicas causadas por C.
pomonella G. Comercialización de la producción. H. Grado de conocimiento de
los agricultores sobre C. pomonella, hospedantes alternativos y su
regulación. I. Grado de conocimiento de los agroquímicos para el control de C.
pomonella. J. Rol social del agricultor en relación con el manejo de C.
pomonella. k. Grado de conocimiento de los agricultores sobre los servicios
ecosistémicos para el control biológico natural de C. pomonella. 2. Los
resultados son el promedio de los indicadores que conforman la variable.
DE=Dimensión Ecológica. DK: Dimensión económica. DSC: Dimensión Sociocultural.
ISg: Índice de Sustentabilidad General. Fórmula. Material
suplementario 1.
These findings
underscore the multifaceted nature of sustainability in pest management. As
expected, farms relying exclusively on chemical control did not achieve the
highest sustainability scores. In several cases, farms without control
practices demonstrated comparable or even higher sustainability indices. This
counterintuitive outcome can be attributed to absent monitoring practices
across farms, regardless of management intensity. Control measurements without
monitoring, particularly chemical applications, are often untimely, excessive,
ineffective and economic-ecologically expensive. The absence of integrated
monitoring systems constitutes a critical barrier for sustainable pest control.
Cluster
Analysis
Cluster analysis based on the General Sustainability Index (ISg)
identified four distinct groups of farms reflecting sustainability degrees (table 3). Cluster One with the highest sustainability level,
comprised only Farm 2, with an ISg of 2.509, surpassing the threshold of 2.0.
However, closer examination revealed that this value was driven by higher
economic and sociocultural scores, while ecological performance remained
limited. The producer demonstrated knowledge of C. pomonella management,
including alternative hosts and appropriate agrochemical use. Ecological
indicators on this farm revealed sparse vegetation cover, greater distances to
spontaneous vegetation, and limited floral diversity from ecologically relevant
plant families. At the opposite end, Cluster Two was represented by Farm 5,
with the lowest sustainability score (ISg: 0.887). Unlike the other units, this
farm’s primary activity is livestock production, with walnut cultivation
playing a minor role. Consequently, C. pomonella was not perceived as a
significant threat, and no management strategies were implemented. Between
these extremes, cluster Three included Farms 4, 6, and 7 (ISg: 1.331, 1.233,
and 1.335, respectively), and Cluster Four included Farms 1 and 3 (ISg: 1.654
and 1.698, respectively). These clusters differed primarily in their ecological
characteristics. Farms in Cluster Four exhibited higher vegetation cover and
greater plant diversity, including flowering species and fruit crops,
supporting beneficial arthropod communities. These farmers also reported
greater economic losses due to C. pomonella, indicating pest pressure
and greater economic dependency on walnut production.
Conclusion
This study
represents the first assessment of sustainability gaps in the phytosanitary
management of C. pomonella among smallholder walnut farmers in
Argentina. The findings highlight that effective and sustainable pest control
must encompass ecological, economic, and sociocultural dimensions, rather than
single-point interventions. To initiate meaningful changes, participatory
frameworks must engage all relevant stakeholders, including farmers, academic
researchers, and public institutions involved in agricultural policy and
extension services. These workshops should be collaborative spaces for
knowledge exchange, trust-building, and context-appropriate co-design
management strategies. Key prevention must implement systematic pest monitoring
and promote ecological practices aimed at regenerating native vegetation and
enhancing habitats for natural enemies. Such efforts would strengthen ecosystem
resilience and support reestablishing natural biological control mechanisms for
C. pomonella. In parallel, enhancing market strategies through
value-added products (e.g., processed walnuts, specialty foods) could
improve profitability, promote investment in sustainable practices, and
increase resilience of walnut production systems. Ultimately, sustainability in
smallholder agricultural systems depends on technical improvements in pest
control and integration of holistic strategies that align ecological integrity
with economic viability and social inclusion. Without adequate profitability,
the relative importance of ecological and social factors diminishes, weakening
long-term sustainability. Addressing vulnerabilities across all sustainability
dimensions (not just one) is essential for effective management of C.
pomonella and secure regional walnut production.
Acknowledgments
We thank the walnut
farmers of Ambato for granting access to their farms and participating in the
interviews. We thank Gabriel Reinoso Franchino for assistance in plant species
identification, Miguel A. Garlati for general assistance, and Nahuel V. Morales
Castilla and Marcos S. Macchioli Grande for language contributions.
This article was proofread by Servicio de Ediciones Científicas
de la FCA, UNCuyo, Mendoza.
1.
Abraham, L.; Alturria, L.; Fonzar, A.; Ceresa, A.; Arnés, E. 2014. Propuesta de
indicadores de sustentabilidad para la producción de vid en Mendoza, Argentina.
Revista de la Facultad de Ciencias Agrarias. Universidad Nacional de Cuyo.
Mendoza. Argentina. 46(1): 161-180.
2.
Altieri, M. A.; Nicholls, C. I. 2007. Biodiversidad y manejo de plagas en
agroecosistemas (Vol. 2). Icaria editorial.
3.
Astier M.; López Ridaura, S.; Pérez E.; Masera O. R. 2002. El Marco de
Evaluación de Sistemas de Manejo incorporando Indicadores de Sustentabilidad
(MESMIS) y su aplicación en un sistema agrícola campesino en la región
Purhepecha, México. Agroecología. 415-430.
4.
Aubel, A. J. 2022. Estudios de nuevas herramientas de control de plagas de
nogales con énfasis en Cydia pomonella en el Valle Inferior del Río
Negro. Primera experiencia. Tesis final de Carrera en Ingeniería Agronómica,
Facultad de Ciencias Agrarias. Universidad Nacional de Río Negro. Argentina.
5.
Barros, L. A.; Espinosa, M.; Romero, O. E.; Carrizo, A.; Cavallo, M. J.; Diez,
P. A. 2024. Actualización sobre la presencia natural de Goniozus legneri (Hymenoptera:
Bethylidae) en agroecosistemas nogaleros de Catamarca y primer registro en el
Departamento Famatina, Provincia de La Rioja. Revista de la Sociedad
Entomológica Argentina. 83(3). DOI: 10.25085/rsea.830305.
6.
Belles, C.; Cichón, L.; Di Masi, S.; Fernández, D.; Magdalena, C.; Rial, E.;
Rossini M. 1996. Guía de pulverizaciones. 72 p.
7.
Blomefield, T. 1994. Codling moth resistance. It is here, and how do we manage
it? Deciduous Fruit Grower. 44(4): 130-132.
8.
Carrizo, A.; Carrasco, F.; Aybar, S.; Leiva, S.; Matías, A. 2015. Estimación
del Coeficiente de Impacto Ambiental (EIQ) en diferentes estrategias
fitosanitarias en sistemas de pequeños productores de nogal, como una herramienta
hacia la transición agroecológica en Catamarca, Argentina. V Congreso
Latinoamericano de Agroecología-SOCLA, La Plata.
9.
Casado, G. G.; Mielgo, A. A. 2007. La investigación participativa en
agroecología: una herramienta para el desarrollo sustentable. Ecosistemas.
16(1).
10.
Cavallo, M. J.; Romero, O. E.; Barros, L. A.; Cichón, L.; Garrido, S. A.; Diez,
P. A. 2024. Functional and numerical response and mutual interference of Goniozus
legneri (Hymenoptera: Bethylidae) on Cydia pomonella (Lepidoptera:
Tortricidae): Its implications for biological control. Journal of Applied
Entomology. 148(4): 454-463. https://doi.org/10.1111/ jen.13238
11.
Censo República Argentina. 2022. Resultados del Censo 2022-Catamarca. https://
censo.gob.ar/ index.php/datos_definitivos_catamarca (Fecha de consulta:
27/11/2024).
12.
Cichón L.; Fernández D. E. 1995. TRV Aplicación de volúmenes adecuados en
cultivos de frutales de pepita. Ed. EEA Alto Valle.
13.
Cichón, L.; Di Masi, S.; Fernández, D.; Magdalena, C.; Rial, E.; Rossini, M.
1996. Guía ilustrada para el monitoreo de plagas y enfermedades en frutales de
pepita. Ed. INTA Centro Regional Patagonia Norte. 72 p.
14.
Cichón L.; Fernández D. E.; Montagna, M. 2015. Evolución del control de
carpocapsa en los últimos veinticinco años. Rev. Fruticultura y
Diversificación. 51: 22-29.
15.
Daly H. E 1997. De la economía del mundo lleno a la economía del mundo vacío.
Ed. Goodland, R. et al. Medio ambiente y desarrollo sostenible. 35-50 p.
16.
Errecart, V. 2012. Diagnóstico de la cadena de la nuez de nogal de las
provincias de La Rioja y Catamarca. Estrategias y tácticas para mejorar su
inserción en el comercio internacional. Tesis de grado de Magister, área
Agronegocios y Alimentos. Universidad Nacional de Buenos Aires. Argentina.
17.
Ferrero A.; Laumann R.; Gutierrez M. M.; Stadler T. 2000. Evaluación en
laboratorio de la toxicidad de insecticidas en Cydia pomonella L.
(Lepidoptera: Tortricidae) y en su enemigo natural Goniozus legneri
Gordh (Hymenoptera: Bethylidae). Publicación de la Agricultura, Rev. de Sanidad Vegetal. Plagas. 26(4): 559-575.
18.
Garrido S.; Cichón L.; Fernández D.; Azevedo C. 2005. Primera cita de la
especie Goniozus legneri (Hymenoptera: Bethylidae) en el Alto Valle de
Río Negro, Patagonia Argentina. Rev. Sociedad Entomológica Argentina. 64(1-2):
14-16.
19.
Gould, F.; Brown, Z. S.; Kuzma, J. 2018. Wicked evolution: Can we address the
sociobiological dilemma of pesticide resistance? Science. 360(6390): 728-732.
DOI: 10.1126/science. aar378
20.
Guzmán Casado G. M.; González de Molina N.; Sevilla Guzmán E. 2000. Métodos y
técnicas en Agroecología, Introducción a la agroecología como desarrollo rural
sostenible. 5: 149-195.
21.
Harte, M. J. 1995. Ecology, sustainability, and environment as capital.
Ecological Economics. 15: 157-164.
22.
Huerga, M.; San Juan, S. 2005. El control de las plagas en la agricultura
argentina. Estudio Sectorial Agrícola Rural-Banco Mundial/Centro de Inversiones
FAO-Buenos Aires, Argentina.
23.
Iermanó, M. J.; Sarandón, S. J.; Tamagno, L. N.; Maggio, A. D. 2015. Evaluación
de la agrobiodiversidad funcional como indicador del potencial de regulación
biótica. Aroecosistemas del sudeste bonaerense. Rev. Facultad de Agronomía. La
Plata. 114(3): 1-14.
24.
Juri, C.; Zárate, L. 2017. Evaluación de la sustentabilidad de una finca
nogalera de un pequeño productor en Mutquin - Pomán - Catamarca. Rev.
Divulgación Técnica Agrícola y Agroindustrial, Facultad de Ciencias Agrarias -
UNCa. 69.
25.
Keil S.; Gu H.; Dorn S. 2001. Response of Cydia pomonella to selection
on mobility: laboratory evaluation and field verification. Ecological
Entomology. 26(5): 495-501. https://doi. org/10.1046/j.1365-2311.2001.00346.x
26.
Landini, F. 2022. Intercambio de experiencias y aprendizaje horizontal entre
extensionistas: Fuente invisibilizada de conocimientos para la práctica.
Psicoperspectivas. 21(3): 7-20. http://dx.doi.org/10.5027/
27.
Lê, S.; Josse, J.; Husson, F. 2008. FactoMineR: An R package for multivariate
analysis. Journal of statistical software. 25: 1-18.
https://doi.org/10.18637/jss.v025.i01
28.
Leyton, J. F. 2023. Efectos subletales de agroquímicos sintéticos y naturales
contra Goniozus legneri Gordh (Hymenoptera: Bethylidae). Tesis de
Magíster en Ciencias Agronómicas. Universidad de Concepción, Chile.
29.
López, I.; Lovi, A.; Trejo, J. 2014. Análisis del agregado de valor en la
cadena agroalimentaria de la nuez de nogal: caso Establecimiento Finca Don
Manuel, Chilecito-La Rioja. Trabajo Final - Áreas de Consolidación, Ingeniería
Agronómica. Universidad Nacional de Córdoba, Argentina.
30.
Manetti, A.; Lara-Navarra, P.; Sánchez-Navarro, J. 2022. El proceso de diseño
para generación de escenarios futuros educativos. Rev. científica
iberoamericana de comunicación y educación. 30 (73). DOI: 10.3916/C73-2022-03
31.
Marcucci, B.; Mazzitelli, M. E.; Garrido, S. A.; Cichón, L. I.; Becerra, V. C.;
Luna, M. G. 2023. Presencia de Goniozus legneri (Hymenoptera:
Bethylidae) y su asociación con lepidópteros plagas en el oasis cultivado Norte
de la provincia de Mendoza, Argentina. Rev. Sociedad Entomológica Argentina.
82(2): 5-5.
32.
Maschio, J. I. 2017. Caracterización de los productores de nogal y su relación
con la calidad final del producto en la provincia de Catamarca. Cartilla de
divulgación técnica. Revista de Divulgación Técnica Agrícola y Agroindustrial.
76.
33.
Matteucci, S. D.; Colma, A. 1982. Metodología para el estudio de la vegetación.
Programa Regional de Desarrollo, Científico y Tecnológico. 22.
34.
Nicholls, C. 2006. Bases agroecológicas para diseñar e implementar una
estrategia de manejo de hábitat para control biológico de plagas. Agroecología.
1: 37-48.
35.
Nicholls, C. I. 2008. Control biológico de insectos: un enfoque agroecológico.
Ed. Universidad de Antioquia. 282 p.
36.
Nievas, W. E.; Rossini, M. N.; Toranzo, J. O.; Iannamico, L. A.; Magdalena, J.
C.; Fernandez, D. E.; Curetti, M. 2014. Bacteriosis del nogal (Xanthomonas
campestris pv. juglandis) en el Valle Medio del río Negro. Repositorio EEA
Alto Valle, INTA. https://repositorio.inta. gob.ar/
bitstream/handle/20.500.12123/16962/INTA_CRPatagoniaNorte_EEAAltoValle_ Nievas_
WE_Bacteriosis_nogal_Xanthomonas_campestris_pv_juglandis.pdf?sequence=1 (fecha
de consulta:20/11/2024).
37.
Obschatko, E. 2009. Las explotaciones agropecuarias familiares en la República
Argentina. Un análisis a partir de los datos del Censo Nacional Agropecuario
2002. Agricultura, Ganadería, Pesca y Alimentos. 68.
http://repositorio.iica.int/handle/11324/6860
38.
Pearce, D.; Atkinson, G. 1993. Capital theory and measure-ments of sustainable
development: an indicator of weak sustainability. Ecological Economics. 8(2):
103-108.
39.
Prataviera, A. G. 2000. Problemática del cultivo de la nuez de nogal en las
provincias de Catamarca y La Rioja. INTA, Estación Experimental Agropecuaria
Catamarca. Informe 4.
40.
Quintana, G.; Cólica, J.; Fernández Gorgola, M.; Rivero, C.; Pérez, O.; Luna
Mercado L. 2007. Control de Carpocapsa (Cydia pomonella L.) con un
producto en base al virus de la granulosis (CPGV), en cultivos de nogal en
Catamarca. Rev. CIZAS. 8: 39-48.
41.
Quintana, G; Cólica J. 2011. Carpocapsa: plaga clave en nogal. Aspectos
morfológicos y biológicos relevantes para un control adecuado. Informe Técnico
INTA. 1.
42.
Rivero, C.; Cólica, J.; Fernández, G. M.; Cruz, R.; Luna, M.; Rivero, A. R.
2012. El nogal: situación productiva en la localidad de El Potrero, Andalgalá,
Catamarca. Rev. CIZAS. 22.
43.
Sarandón, S. J. 2002. El desarrollo y uso de indicadores para evaluar la
sustentabilidad de los agroecosistemas. Agroecología. 20: 393-414.
44.
Sarandón, S. J.; Zuluaga, M. S.; Cieza, R.; Janjetic, L.; Negrete, E. 2006.
Evaluación de la sustentabilidad de sistemas agrícolas de fincas en Misiones,
Argentina, mediante el uso de indicadores. Agroecología. 1: 19-28.
45.
Sarandón, S. J.; Flores, C. C. 2009. Evaluación de la sustentabilidad en
agroecosistemas: una propuesta metodológica. Agroecología. 4: 19-28.
46.
Sazo, L.; Araya, J. E.; Rodríguez, P. 2006. Evaluación de la susceptibilidad de
Cydia pomonella (L.) (Lepidoptera: Tortricidae) al azinfosmetil en
Chile. Boletín Sociedad Entomológica Aragonesa. 39: 451-453.
47.
Secretaría de Agricultura, Ganadería, Pesca y Alimentos (SAGPyA). 2024. Informe
síntesis de la economía regional: nuez del nogal. https://alimentosargentinos.magyp.gob.ar/
HomeAlimentos/
economias-regionales/producciones-regionales/informes/Informe_Nuez_nogal.pdf/
(fecha de consulta 27/12/2024).
48.
Soleño J.; Anguiano O. L.; Cichón L. B.; Garrido S. A.; Montagna; C. M. 2012.
Geographic variability in response to azinphos-methyl in field-collected
populations of Cydia pomonella (Lepidoptera: Tortricidae) from
Argentina. Pest Management Science. 68(11): 1451-1457.
https://doi.org/10.1002/ps.3327
49.
Tamagno, L. N.; Iermanó, M. J.; Sarandón, S. J.; Pérez, R. A. 2014. Influencia
de los saberes de los agricultores familiares pampeanos sobre las decisiones
productivas y tecnológicas: su relación con un manejo sustentable. Acta IX
Congreso Latinoamericano de Sociología Rural. México.
50.
Wezel, A.; Gemmill-Herren, B.; Bezner-Kerr, R.; Barrios, E.; Rodrigues
Gonçalves, A.; Sinclair, F. 2020. Agroecological principles and elements and
their implications for transitioning to sustainable food systems. A review.
Agronomy for Sustainable
Development. 40: 1-13. https://doi.org/10.1007/s13593-020-00646-z /
Supplemmentary
material:
Funding information
The study was funded by the Agencia Nacional de Promoción
Científica y Tecnológica de Argentina through “Fondo Nacional de Ciencia y Tecnología
(FONCyT)” (PICT 2018-02508, PICT 2020-03499 and PICT 2021-00194) and “Fondos
Complementarios para proyectos de Investigación con el Impacto en el territorio
Argentino 2024 - Fundación Williams”.