Revista de la Facultad de Ciencias
Agrarias. Universidad Nacional de Cuyo. En prensa. ISSN (en línea) 1853-8665.
Original article
First
Report of the Black Soybean Weevil Rhyssomatus subtilis Fiedler
(Coleoptera: Curculionidae) in Córdoba, Argentina. Crop Damage Estimation
Primer
registro del picudo negro de la soja Rhyssomatus subtilis Fiedler
(Coleoptera: Curculionidae) en la provincia de Córdoba, Argentina, y estimación
de daño en el cultivo
Celso Roberto
Peralta1, 2, 3*,
Matías Rinero3,
Daniel Antonio
Igarzábal3,
Roberto Luis De
Rossi1
1Universidad
Católica de Córdoba. Avda. Armada Argentina N° 3555. C. P. X5016DHK. Córdoba.
Argentina.
2Universidad
Nacional de Córdoba. Ing. Agr. Félix Aldo Marrone 746. C. P. 5000. Córdoba.
Argentina.
3Moha
S. A. Calle Tucumán 255 Of 14. X5220BBE. Jesús María. Córdoba. Argentina.
*0424746@ucc.edu.ar
Abstract
The black
soybean weevil is an endemic pest in northwestern and northeastern Argentina,
causing significant damage. The objective of this study was to confirm the presence
of this species in Córdoba, describe symptomatology and evaluate the potential impact
on the crop. Surveys were conducted in plots located in the north-central part
of the province. Individuals were collected and a quantitative assessment of
symptoms and damage was conducted. Twenty compound samples were taken from
sectors showing different physiological appearances (green vs. yellowish).
In each group, total pod number and damaged pod number allowed calculating
damage percentage. Data were analyzed by ANOVA and Fisher's test (α = 0.05).
All collected individuals matched the morphological descriptions reported in
the literature for the species Rhyssomatus subtilis Fiedler. Green plants
had a higher proportion of damaged pods (0.89) and fewer pods (31.85) compared to
yellowish plants (0.53 and 46.65, respectively). This relationship suggests a
direct effect on biomass partitioning. Our finding remaps the pest’s
distribution range, warning areas of high agricultural production in Córdoba
and raising the need to link public-private actions to minimize its spread.
Keywords: damaged pods, yield
losses, distribution, Glycine max
Resumen
El picudo negro
de la soja es una plaga endémica en el norte de Argentina, donde genera daños
significativos. El objetivo del trabajo fue confirmar la presencia de esta
especie en Córdoba, describir los síntomas observados y evaluar el impacto
potencial sobre el cultivo. Se realizaron relevamientos en lotes del
centro-norte de la provincia, se recolectaron individuos y se realizó una
evaluación cuantitativa de los síntomas y daños. Se realizaron veinte muestreos
compuestos de cinco plantas cada una en sectores que presentaban plantas con distinto
aspecto fisiológico (verdes vs. amarillentas). En cada grupo se evalúo
el número total de vainas, el número de vainas dañadas, y se calculó el
porcentaje de daño, las diferencias registradas fueron analizadas mediante
ANOVA y sus medias diferenciadas por test de Fisher (α 0,05). Todos los
individuos recolectados coincidieron con las medidas morfológicas y descripciones
registradas en la literatura para la especie Rhyssomatus subtilis Fiedler.
Las plantas verdes presentaron mayor proporción de vainas dañadas (0,89) y
menor número total de vainas (31,85) en comparación con las amarillentas (0,53
y 46,65 respectivamente), con diferencias significativas (p< 0,05).
Esta relación sugiere un efecto directo del insecto sobre la fisiología del
cultivo, asociado con alteraciones en la relación fuente-destino. Este hallazgo
amplía el rango de distribución conocida de esta plaga, alertando sobre su
posible establecimiento en zonas de alta producción agrícola de Córdoba y
planteando la necesidad de vincular acciones público y privadas para minimizar
o contener la expansión de la plaga.
Palabras claves:
vainas
dañadas, pérdidas de rendimiento, distribución, Glycine max
Originales: Recepción: 20/05/2025 - Aceptación: 01/09/2025
Introduction
Soybean (Glycine
max L.) is a major pillar of agricultural production in Argentina. In Córdoba
Province, soybean occupies approximately 4,758,800
hectares, which represents 62% of the total summer crop area estimated at
7,668,200 hectares (Bolsa de Cereales de Córdoba, 2024). In this
context, phytosanitary monitoring has gained importance due to the emergence
and spread of pests holding significant agronomic impact.
Until recently,
the phytosanitary status of soybean in Córdoba remained relatively stable, with
a pest complex dominated by well-known, routinely monitored species. However,
in recent seasons, isolated insects, rarely found in the region, have been
recorded. Some lack clear antecedents as pests in the local production system (Peralta,
2022).
The genus Rhyssomatus
Schönherr (Coleoptera: Curculionidae) comprises South American native
species, several of which are associated with legume crops (Wibmer
& O’Brien, 1986; Lanteri et al., 2002). In
north-western Argentina (NOA), the weevil complex associated with soybean
constitutes an important phytosanitary problem, given direct damage and rapid
dispersal capacity. Within this group, Rhyssomatus subtilis Fiedler,
known as the soybean black weevil, has become a major pest in the region due to
its high biotic potential, its impact on reproductive structures and its
adaptation to different environments (Socías et al.,
2009; Cazado et al., 2014).
In recent years,
its presence has been documented in new expansion zones in north-west Argentina
(NOA) like eastern Santiago del Estero, on soybean and cotton crops (Casuso
et al., 2022).
R. subtilis shows a strong association with cultivated and volunteer legumes
and is characterized by ovipositing in soybean pods, where larvae feed on the
seeds, hindering early detection, and causing direct yield losses (Cazado
et al., 2014).
Confirmation of the presence of R. subtilis in soybean fields of
north-central Córdoba would not only imply an expansion of its geographic range
but also serve as a warning for phytosanitary surveillance systems in the
Pampas region.
This work aimed
to document the presence of R. subtilis in soybean crops in Córdoba Province,
describe field symptomatology, assess damage level and discuss potential agronomic,
ecological, and productive implications.
Materials
and Methods
Sampling
Sites
During the
2024/25 growing season, seven sites located in north-center Córdoba, within
Colón and Santa María Departments, were visited following grower reports of pod
damage. All sites were at advanced reproductive stages (R6-R7), (Fehr
& Caviness, 1977)
when sampled (table 1).
Table
1. Sampling sites for detection of the
soybean black weevil (Rhyssomatus subtilis) located in the north-center
of Córdoba Province, 2024/25 growing season.
Tabla 1. Sitios
de muestreo en el centro-norte de la provincia de Córdoba, campaña agrícola
2024-25, para la determinación de la presencia del picudo negro de la soja (Rhyssomatus
subtilis).

Field
Characteristics and Management
All seven sites
were commercial soybean fields under no-tillage. Only one site had received a
specific insecticide spray targeting curculionids. Previous summer-crop
rotations differed among fields (table 2). Additionally,
a comparative map showed historical phytosanitary monitoring sites in
north-central Córdoba and the sites where R. subtilis was detected in
2024/25. The historical database (15 seasons, 2009/10-2024/25) was generated by
Moha S. A. (firm to which the authors belong). These data were overlaid with
the 2024/25 detection sites.
Table
2. Crop management indicators of seven
soybean fields showing pod damage caused by the black weevil (Rhyssomatus
subtilis), Córdoba, 2024/25.
Tabla 2. Detalle
de manejo de cultivo de siete lotes de producción de soja con presencia de daño
de picudo negro (Rhyssomatus subtilis) en vainas. Córdoba, campaña
agrícola 2024-25.

* Sy.: Soybean; Mz.: Maize.
Date,
Plot Segmentation and Sampling Procedure
Damage
assessment was carried out on April 2, 2025 at Site 1 (Agnolon Farm), with the
crop at advanced R6 (Fehr & Caviness, 1971). At the
remaining sites (2-7), samples of adult weevils, damaged pods and other
affected plant structures were collected for morphological identification.
At Site 1,
structured damage evaluation was performed by random sampling within two
contrasting areas of the field: (i) zones with naturally yellowing plants
(considered slightly damaged) and (ii) zones with completely green plants
(considered severely damaged). At each zone, 20 composite samples were taken,
each composed of five consecutive plants manually removed along the sowing row.
Plants were transported to the laboratory, where all pods per sample were
removed and counted. Total pod number and damaged pod number (attributable to R.
subtilis) were recorded, allowing estimation of relative incidence. Pod set
differences among areas and percentage of damaged pods were calculated in each
site. ANOVA and Fisher’s LSD test (α < 0.05) were performed using InfoStat
statistical software (Di Rienzo et al., 2010).
At Sites 2-7,
only adult curculionids, damaged pods and other affected tissues were
collected. Samples were kept in ventilated glass containers and taken to the
laboratory for taxonomic confirmation. Photographic records of damage were
obtained with a compact digital camera (Olympus Tough TG-4 iHS, Sony ZV-1) and
a DJI Mavic Pro drone. Drone images were acquired with stacked exposures to
enhance contrast. Chromatic classification of RGB channels was performed using
color-histogram thresholds and digital-image analysis tools in Python.
Classified zones were delineated by contour detection for visual and
quantitative comparison. Color interpretation was based on field observations
of symptoms like foliage persistence, green pods, and adult presence.
Insect
Identification
The collected
specimens were morphologically identified in the laboratory with binocular
magnifying glass and using taxonomic keys Fiedler
(1937-1938).
Results
Insect
Identification
All collected
individuals matched the descriptions recorded for Rhyssomatus subtilis Fiedler
(Coleoptera: Curculionidae) (Fiedler,
1937-1938; Socías et al., 2009; Cazado et al., 2014). The finding
was reported to Servicio Nacional de Sanidad y Calidad Agroalimentaria (SENASA)
through the Sistema Nacional de Vigilancia y Monitoreo de plagas (SINAVIMO)
(communication No. 1368) on April 12, 2025.
Córdoba
specimens were identified based on the original characters of Fiedler (1939)
and the morphological syntheses of Socías et al.
(2009)
and Cazado et al. (2014): (I) length
4.8-5.2 mm, width 2.5-3 mm, body oval-elongate, somewhat sub-rhombic; (II)
integument dark brown-black, lacking scales or bands; (III) head very finely
and densely punctate, strongly arched, the eyes separated dorsally by more than
the width of the rostrum; (IV) rostrum very slender, moderately curved,
considerably longer than the head and pronotum, recessed at the base so that the
head and the base of the rostrum are not aligned in profile; (V) elytra with
longitudinal striae and well-marked rows of punctures; (VI) female fore leg
with a weak, angulate femur and the presence of an uncus (u) and mucro (m) on
the tibia; (VII) apodous larvae 5-6 mm long, body curved in a “C” shape, milky
white, with a light-brown to caramel head (figure 1).
A) adult dimensions and
color details; B) frontal view of the head, its punctures and eyes separated
above the rostrum; C) adult lateral view; D.1) detail of female fore legs with
presence of uncus (u) and mucro; D.2) detail of male fore legs only with
presence of mucro; E.1) lateral view of apodous larva with curved body; E.2)
lateral view of head in apodous larva.
A) dimensiones y detalles
de color de adulto; B) vista frontal de cabeza, sus puntuaciones y ojos
separados por encima de la probóscide; C) adulto vista lateral; D.1) detalle de
patas delanteras de hembra con presencia de uncus (u) y mucro; D.2) detalle de
patas delanteras de macho solo con presencia de mucro; E.1) vista lateral de
larva ápoda con cuerpo curvado; E.2) vista lateral de la cabeza en larva ápoda.
Figure 1. Rhyssomatus
subtilis adults and
larvae.
Figura 1. Adultos
y larvas de Rhyssomatus subtilis.
Sampling
Adults, larvae,
eggs, and soybean crop damage matched the literature describing R. subtilis at
the seven evaluated sites (figure 2).
A) Adult, B) Larva, C) Egg.
A) Adulto, B) Larva, C) Huevo.
Figure 2. Details
of Rhyssomatus subtilis specimens found in north-central Córdoba during
the 2024-25 growing season.
Figura 2. Detalle
de especímenes de Rhyssomatus subtilis encontrados en el centro-norte de
Córdoba durante la campaña agrícola 2024-25.
Considering
historical phytosanitary monitoring points previously surveyed by Moha S.A.
over 15 growing seasons, and the seven sites where we detected R. subtilis during
the 2024/25 season, the geographical distribution of the new detections is
shown in relation to previously pest-free areas (figure 3).
Figure 3. Comparative
map between historical phytosanitary monitoring sites (2009-10 to 2024-25)
surveyed by Moha S.A. (red circles) and sites with detection of Rhyssomatus
subtilis during the 2024/25 season (blue diamonds), showing the location of
the new detections in relation to previously monitored areas with no pest
records.
Figura 3. Mapa
comparativo entre sitios históricos de monitoreo fitosanitario (2009-10 a
2024-25) realizados por la consultora Moha S.A. (círculos rojos) y los sitios
con detección de Rhyssomatus subtilis durante la campaña 2024/25 (rombos
azules), donde se denota la localización de las nuevas detecciones en relación
con las áreas previamente monitoreadas sin registro de la plaga.
Damage
Assessment
At Site 1,
plants with contrasting physiological appearances revealed significant
differences regarding proportion of damaged pods and total number of pods per
plant (figure
4).
A.1, A.2, A.3) Plants with different behavior (green
vs. yellowing); B.1, B.2, B.3) detail of affected pods; C.1) drone image
of the field with high infestation in Malvinas Argentinas, Córdoba, showing
sectors with yellowing and green plants; C.2) image of the same field produced
through chromatic classification based on the assessments performed, In red,
sectors with lower infestation (yellowing plants due to natural senescence) and
in green, sectors with higher infestation (green plants with foliage retention).
A.1, A.2, A.3) Plantas con distintos comportamientos
(verdes vs. amarillentas); B.1, B.2) detalle de vainas afectadas; C.1) Imagen
aérea (drone) del lote con alta afección en la localidad de Malvinas
Argentinas, Córdoba, donde se visualizan sectores con plantas amarillentas y
plantas verdes; C.2) Imagen de ese lote realizada con clasificación cromática
con base en las evaluaciones realizadas, siendo el color rojo la representación
de sectores con menor afección (plantas amarillentas por senescencia natural) y
en verde los sectores con mayor afección (plantas verdes con retención foliar).
Figure 4. Damage
recorded by Rhyssomatus subtilis in north-central Córdoba during the
2024-2025 growing season.
Figura 4. Detalle
de los daños registrados por Rhyssomatus subtilis en el centro-norte de
Córdoba durante la campaña agrícola 2024-2025.
Damage
percentage was significantly higher (p < 0.0001) in green plants (0.89 ±
0.01) than in yellowing plants (0.53 ± 0.01). The CV was 9.04 %, and the
adjusted R² was 0.89, indicating modeling high explanatory power. Likewise,
total number of pods differed significantly (p = 0.0015), averaging 46.65 ±
3.05 pods in yellowing plants versus 31.85 ± 3.05 in green plants. These
results indicate a strong association between damage intensity and plant
physiological status, suggesting that R. subtilis may be affecting both
pod number and pod integrity at crop advanced reproductive stages.
At the remaining
sites (2-7), although quantitative assessments were not conducted, damage was
observed at varying degrees of severity. In all cases, adults were found on
plants and damaged pods, together with signs of integument perforation, injured
seeds, and R. subtilis larvae feeding (figure 4).
Discussion
Confirmation of R.
subtilis Fiedler in the Colón and Santa María Departments of Córdoba
extends its geographic distribution towards center Argentina by approximately
450 km with respect to historical reports from NOA (Salta, Tucumán and Santiago
del Estero). The species has been verified in more than 53 localities in that
region (Cazado et al., 2014), with these
new determinations confirming a significant latitudinal dispersal capacity,
colonizing new soybean areas of the Chaco ecoregion.
The adults
sampled from north-central Córdoba exhibited cited characters (Socías
et al., 2009; Cazado et al., 2014), ruling out
possible confusion with other local curculionid species of wider regional
distribution like Pantomorus leucoloma (Aragón, 2007) (table
3).
Table
3. Comparative table of morphological traits
of soybean black weevil (Rhyssomatus subtilis) and alfalfa weevil (Pantomorus
leucoloma).
Tabla 3. Tabla
comparativa de características morfológicas para la diferenciación entre el
Picudo negro de la soja (Rhyssomatus subtilis) y el Gorgojo de la
alfalfa (Pantomorus leucoloma).

In the NOA
region, yield losses of up to 100% have been documented under high, uncontrolled
populations of R. subtilis. In the grain-filling reproductive phase (R5
to R6)- a critical stage-losses can reach 60% (Cazado et al.,
2014).
In eastern Santiago del Estero Province, pod damage ranges between 21% and 42%
(Casuso
et al., 2023).
Site 1 showed
that plants with the highest proportion of damaged pods, approximately 90%
attributable to R. subtilis, displayed an active vegetative state
(green). In contrast, less damaged plants, 53% damaged pods, exhibited a normal
progression of crop senescence (yellowing), coinciding with previous studies (Cazado
et al., 2014; Casuso et al., 2023).
Different
physiological maturity among plants with greater damage suggests that affected reproductive
structures may have altered biomass partitioning, generating stem greening and
vegetative-tissue retention as a compensatory response to physiological
imbalance.
This behavior
partly resembles the green stem syndrome (GSS) in soybeans, characterized by
persistent green tissues at harvest, linked to physiological imbalances in
assimilate redistribution, abiotic stress, insect or disease damage, and even
management practices (Rotundo et al., 2012;
Salvagiotti et al., 2020). Particularly, the loss of sink
structures like pods or seeds can result in sugar accumulation in vegetative
tissues, delaying maturity and provoking symptoms like GSS (Egli
& Bruening, 2006).
A similar
situation occurs in the so-called “soja loca” (“crazy soybean”) syndrome,
reported mainly in Brazil and northern Argentina, where prolonged leaf
retention, green stems and pod abortion have also been associated with
infections by the nematode Aphelenchoides besseyi and hormonal
alterations (Ferreira et al., 2010). Although
nematodes were not detected in our study, symptoms shared some
eco-physiological patterns like the loss of reproductive structures and the
persistence of active vegetative tissues. This reinforces the need to broaden
entomological and eco-physiological monitoring.
Larval activity
caused direct seed loss and partitioning alterations, leading to physiological
imbalances like those described in the green stem and/or crazy soybean
syndromes. These effects compromise yield and hinder visual assessment of
phenological progress, generating risks in harvest scheduling.
To date, no
documented records of R. subtilis existed for Córdoba Province. This
finding becomes invaluable from agronomic, sanitary, and ecological
perspectives, marking a significant expansion in the known geographic
distribution of this pest in Argentina. We highlight the need to adapt
monitoring schemes within regional phytosanitary surveillance systems to
facilitate timely detection of R. subtilis, and advance local studies
assessing population behavior, crop-pest interactions and possible integrated
management strategies.
Conclusions
For the first
time, the presence of the soybean black weevil R. subtilis was confirmed
in fields of Córdoba Province.
Physiological
differences were observed among plants with different levels of damage, linked
to the intensity of the infestation.
The productive
sector of Córdoba is on alert due to the presence of a new pest with high
damage potential. Public-private actions should minimize pest spread.
Acknowledgments
Special thanks
to the Agricultural Engineers Hugo Digón, Eduardo Vasallo and Daniela Vecchio
for their contributions on sites where the pest is present and their very
useful comments. Thanks also to the producers Fabián Daga and Rolando Carando
for facilitating access and collaborating in the survey.
References
Aragón,
J. & Imwinkelried, JM. (2007). Manejo integrado de plagas de la alfalfa. En
DH Basigalup (Ed.), El cultivo de la alfalfa en la Argentina, (p.
165-197). Ediciones INTA - EEA Manfredi.
Bolsa
de Cereales de Córdoba. (2024). Informe de campaña agrícola 2023/2024.
https://www.bccba. org.ar
Casuso,
M., Tarragó, J., Cazado, L., Casmuz, A., Cancino, C., Soneira, D., &
Gullini, L. (2022). Registro de Rhyssomatus subtilis Fiedler
(Coleoptera: Curculionidae) en la zona de El Caburé (Santiago del Estero) sobre
los cultivos de soja Glycine max (L.) Merr. y
algodón (Gossypium hirsutum). INTA Las Breñas.
Casuso,
VM, Cancino, CA, Tarragó, JR, & Pérez, GA (2023). Primeras evaluaciones
para conocer el comportamiento del picudo negro de la soja Rhyssomatus
subtilis Fiedler (Coleoptera: Curculionidae) en el este de Santiago del
Estero. En XXVIII Reunión de Comunicaciones Científicas, Técnicas y de
Extensión. Universidad Nacional del Nordeste, Facultad de Ciencias Agrarias. p.
38. https://repositorio.unne.edu.ar/handle/123456789/55928
Cazado,
LE, Casmuz, AS, Scalora, F., Murúa, MG, Socías, MG, Gastaminza, GA, &
Willink, E. (2014). El picudo negro de la soja, Rhyssomatus subtilis Fiedler
(Coleoptera: Curculionidae). Avance Agroindustrial, 35(4), 55-60.
Di
Rienzo, JA, Balzarini, M., Casanoves, F., Gonzalez, L., Tablada, M., Robledo,
CW. (2010). InfoStat, Software Estadístico. Universidad Nacional de Córdoba,
Argentina.
Egli,
DB, & Bruening, WP. (2006). Depodding causes green-stem syndrome in
soybean. Crop Management, 5(1), 1-5.
https://doi.org/10.1094/CM-2006-0104-01-RS
Fehr,
WR, & Caviness, CE. (1977). Stages of soybean development (Special Report
N° 80). Iowa State University Cooperative Extension Service.
Ferreira,
AB, de Almeida, MR, & Dias, WP. (2010). Incidência de Aphelenchoides
besseyi em cultivares de soja com sintomas de “soja louca”. Nematologia
Brasileira, 34(1), 39-45.
Fiedler,
C. (1937-1938). Neue südamerikanische Arten der Gattung Rhyssomatus Schönh.
(Col. Curc. Chryptorhynch.). Entomologisches Nachrichtenblatt (Troppau), 12:
81-96.
Lanteri,
AA, del Río, MG, & Marvaldi, AE. (2002). Curculionoidea (Coleoptera). In LE
Claps, J. Morrone & MC Roig-Juñent (Eds.), Biodiversidad de artrópodos
argentinos, 1: 327-349. Ediciones Sur.
Peralta,
CR. (2022). Congreso N°30 AAPRESID: Un congreso a suelo abierto. Tecnologías
para el manejo integrado de insectos.
Rotundo,
JL, Salvagiotti, F., & Andrade, FH. (2012). Physiological and management
causes of the green stem disorder in soybean. Field Crops Research, 134:
186-195.
Salvagiotti,
F., Rotundo, JL, & Pereyra, VR. (2020). Advances in understanding the green
stem disorder in soybean. Revista de la Facultad de Agronomía, 119(1),
1-9.
Socías,
MG, Rosado-Neto, GH, Casmuz, AS, Zaia, DG, & Willink, E. (2009). Rhyssomatus
subtilis Fiedler (Coleoptera: Curculionidae), primer registro para la
Argentina y primera cita de planta hospedera, Glycine max (L) Merr. Revista
Industrial y Agrícola de Tucumán, 86(1): 43-46.
Wibmer,
GJ, & O’Brien, CW. (1986). Annotated checklist of the weevils (Curculionidae
sensu lato) of South America. Memoirs of the American Entomological
Institute, 39: 1-563.