Antimicrobial and antioxidant properties of the woody endocarp of native and commercial walnuts from Argentina
DOI:
https://doi.org/10.48162/rev.39.162Palabras clave:
Juglans australis, fitopatógenos, polifenoles, compuestos bioactivos, agricultura sustentable, Xanthomonas sp.Resumen
Juglans australis is a tree from the Juglandaceae family found in the southernmost region of America. Its small edible nuts are not commercialized, and their bioactive characteristics are unknown. This study first reports the antioxidant, antiradical, and antibacterial activity of extracts from this native walnut against phytopathogenic bacteria and compared with its commercial counterpart, J. regia L. Different extracts from the woody endocarp (shells) were obtained using methanol and ethyl acetate. Methanolic extracts significantly inhibited phytopathogenic growth at all concentrations tested (0.1, 1, and 10 mg/mL). The best activity was reported against Xanthomonas. Highest total phenolics and the most significant antioxidant activity were determined in methanolic extracts (TPC: 121 mg gallic acid equivalent (GAE)/g of dried peel, FRAP: 58.6 mmol Trolox/100 g of peel dried and 9.7 mM Trolox/100 g of dried peel). Extracts from both species demonstrated congruent patterns. Gallic acid was the most abundant compound in the methanolic extract. However, extracts demonstrated superior efficiency, suggesting a potential synergistic effect among their components. Antioxidant and antimicrobial activity of methanolic extracts against Xanthomonas make them potential control agents.
Highlights:
- First report of antioxidant and antibacterial properties in Juglans australis nuts.
- Methanolic extracts from walnut shells significantly inhibit Xanthomonas.
- High phenolic content and antioxidant activity highlight Juglans australis'.
- Galic acid is the dominant bioactive in methanolic extracts with synergistic effects.
- Native walnut extracts offer sustainable phytopathogen control alternatives.
Descargas
Citas
Acquaviva, R.; D’Angeli, F.; Malfa, G. A.; Ronsisvalle, S.; Garozzo, A.; Stivala, A.; Ragusa, S.; Nicolosi, D.; Salmeri, M. and Genoveseet, C. 2021. Antibacterial and anti-biofilm activities of walnut pellicle extract (Juglans regia L.) against coagulase-negative staphylococci. Nat Prod Res. 35(12): 2076-81.
Akbari, V.; Jamei, R.; Heidari, R.; Esfahlan, A. J. 2012. Antiradical activity of different parts of Walnut (Juglans regia L.) fruit as a function of genotype. Food Chemistry. 135: 2404-2410.
Bajpai, V. K.; Dung, N. T.; Suh, H. J.; Kang, S. C. 2010. Antibacterial activity of essential oil and extracts of Cleistocalyx operculatus Bbds against the bacteria of Xanthomonas spp. JAOCS, Journal of the American Oil Chemists Society. 87: 1341-1349.
Barekat, S.; Nasirpour, A.; Keramat, J.; Dinari, M.; Meziane-Kaci, M.; Paris, C.; Desobry, S. 2022. Phytochemical composition, antimicrobial, anticancer properties, and antioxidant potential of green husk from several walnut varieties (Juglans regia L.). Antioxidants. 12(1): 52.
Bennet, R. A.; Billing, E. 1978. Capsulation and virulence in Erwinia amylovora. Annals of Applied Biology. 89: 41-45.
Benzie, I. F. F.; Strain, J. J. 1996. The ferric reducing ability of plasma (FRAP) as a measure of antioxidant power: The FRAP assay. Analytical Biochemistry. 239: 70-76.
Bernard, A.; Lheureux, F.; Dirlewanger, E. 2018. Walnut: past and future of genetic improvement. Vol. 14. Tree Genetics and Genomes. Springer Verlag.
Boiteux, J.; Espino, M.; Fernández, M. de los Á.; Pizzuolo, P.; Silva, M. F. 2019. Eco-friendly postharvest protection: Larrea cuneifolia-nades extract against botrytis cinerea. Revista de la Facultad de Ciencias Agrarias. Universidad Nacional de Cuyo. Mendoza. Argentina. 51(2): 427-437.
Boiteux, J.; Fernández, M. de los Á.; Espino, M.; Fernanda Silva, M. F.; Pizzuolo, P. H.; Lucero, G. S. 2023. In vitro and in vivo efficacy of Larrea divaricata extract for the management of Phytophthora palmivora in olive trees. Revista de la Facultad de Ciencias Agrarias. Universidad Nacional de Cuyo. Mendoza. Argentina. 55(2): 97-107. DOI: https://doi.org/10.48162/rev.39.112
Brand-Williams, W.; Cuvelier, M. E.; Berset, C. 1995. Use of a free radical method to evaluate antioxidant activity. LWT-Food Science and Technology. 28: 25-30.
Brown, A. D.; Grau, H. R.; Malizia, L. R.; Grau, A. 2001. In: Kappelle M, Brown AD (eds) Bosques nublados del neotrópico. Instituto Nacional de Biodiversidad. Costa Rica. p 623-659.
Carnaval, L. S. C.; Cerboneschi, M.; Tegli, S.; Yoshida, C. M. P.; Melo, E.; Santos, A. M. P. 2022. Potential agrifood application of seriguela (Spondias purpurea L.) residues extract and nanoZnO as antimicrobial, antipathogenic and antivirulence agents. Research, Society and Development 11: e37211125033. https://doi.org/10.33448/rsd-v11i1.25033
Cavalca, L. B.; Zamuner, C. F. C.; Saldanha, L. L.; Polaquini, C. R.; Regasini, L. O.; Behlau, F.; Ferreira, H. 2020. Hexyl gallate for the control of citrus canker caused by Xanthomonas citri subsp citri. Microbiology open. 9: 1-8.
Daglia, M. 2012. Polyphenols as antimicrobial agents. Current Opinion in Biotechnology. 23: 174-181.
Delaviz, H.; Mohammadi, J.; Ghalamfarsa, G.; Mohammadi, B.; Farhadi, N. 2017. A review study on phytochemistry and pharmacology applications of Juglans regia plant. Phcog Rev. 11: 145-52.
Fernández-Agulló, A.; Castro-Iglesias, A.; Freire, M. S.; González-Álvarez, J. 2020. Optimization of the extraction of bioactive compounds from walnut (Juglans major 209 x Juglans regia) leaves: Antioxidant capacity and phenolic profile. Antioxidants. 9: 4-6.
Fernández-Agulló, A.; Freire, M. S.; Ramírez-López, C.; Fernández-Moya, J.; González-Álvarez, J. 2021. Valorization of residual walnut biomass from forest management and wood processing for the production of bioactive compounds. Biomass Convers Biorefin. 11(2): 609-18.
Hu, Q; Liu, J.; Li, J.; Liu, H.; Dong, N.; Geng, Y.; Yang, L.; Wang, Y. 2020. Phenolic composition and nutritional attributes of diaphragma juglandis fructus and shell of walnut (Juglans regia L.). Food Sci Biotechnol. 29(2): 187-96.
Hussain, T.; Singh, S.; Danish, M.; Pervez, R.; Hussain, K.; Husain, R. 2020. Natural Metabolites: An eco-friendly approach to manage plant diseases and for better agriculture farming. In natural bioactive products in sustainable agriculture. https://doi.org/10.1007/978-981-15-3024-1_3
INFOSTAT Analytical Software version 2020e. Universidad Nacional de Córdoba. Córdoba. Argentina.
Krol, E.; De Sousa Borges, A.; Da Silva, I.; Polaquini, C. R.; Regasini, L. O.; Ferreira, H.; Scheffers, D. J. 2015. Antibacterial activity of alkyl gallates is a combination of direct targeting of FtsZ and permeabilization of bacterial membranes. Frontiers in Microbiology. 6: 390.
Lorenzo, M. E.; Casero, C. N.; Gómez, P. E.; Segovia, A. F.; Figueroa, L. C.; Quiroga, A.; Werning, M. L.; Wunderlin, D. A.; Baroni, M. V. 2020. Antioxidant characteristics and antibacterial activity of native woody species from Catamarca, Argentina. Nat Prod Res. DOI: 10.1080/14786419.2020.1839461.
Luján, E. E.; Torres-Carro, R.; Fogliata, G.; Alberto, M. R.; Arena M. E. 2019. Fungal Extracts as Biocontrol of Growth, Biofilm Formation, and Motility of Xanthomonas citri subsp. citri. Global Journal of Agricultural Innovation, Research & Development. 6: 25-37.
Macioniene, I.; Cepukoit, D.; Salomskiene, J.; Cernauskas, D.; Burokiene, D.; Salaseviciene, A. 2022. Effects of Natural Antimicrobials on Xanthomonas Strains Growth. Horticulturae. 8: 7.
Mansfield, J.; Genin, S.; Magori, S.; Citovsky, V.; Sriariyanum, M.; Ronald, P.; Dow, M.; Verdier, V.; Beer S. V.; Machado, M. A. 2012. Top 10 plant pathogenic bacteria in molecular plant pathology. Mol. Plant Pathol. 13: 614-629.
Masek, A.; Latos-Brozio, M.; Chrzescijanska, E.; Podsedek, A. 2019. Polyphenolic profile and antioxidant activity of Juglans regia L. leaves and husk extracts. Forests. 10: 988. doi:10.3390/f10110988
Mateș, L.; Rusu, M. E.; Popa, D. S. 2023. Phytochemicals and Biological Activities of Walnut Septum: A Systematic Review. J Antioxidants. 12(3): 604.
Merlin, E.; Lopez, J.; Sarmiento, H. 2014. Control del tizón del fuego en manzano. Folleto Técnico Núm. 73. INIFAP.
Miller, S. A.; Ferreira, J. P.; Lejeune, J. T. 2022. Antimicrobial use and resistance in plant agriculture: A one health perspective. Agriculture (Switzerland). 12(2): 1-27.
Mohana, D. C.; Raveesha, K. A. 2006. Antibacterial activity of Caesalpinia coriaria (Jacq.) Willd. against plant pathogenic Xanthomonas pathovars: an ecofriendly approach. Journal of Agricultural Technology. 2: 31.
Moure, A.; Cruz, J. M.; Franco, D.; Domínguez, J. M.; Sineiro, J.; Domínguez, H. 2001. Natural antioxidants from residual sources. Food Chem. 72: 145-171.
OEPP/EPPO. 2005. Clavibacter michiganensis subsp. michiganensis. Bull. OEPP-EPPO Bull. 35: 275-283.
Oliveira, I.; Sousa, A.; Ferreira, I. C. F. R.; Bento, A.; Estevinho, L.; Pereira, J. A. 2008. Total phenols, antioxidant potential and antimicrobial activity of walnut (Juglans regia L.) green husks. Food and Chemical Toxicology. 46: 2326-2331.
Pereira, A. P.; Ferreira, C. F. R.; Marcelino, F, Valentao, P.; Andrade, P.; Seabra, R.; Estevinho, L.; Bento A.; Pereira, J. A. 2007. Phenolic compounds and antimicrobial activity of olive (Olea europaea L. Cv. Cobrançosa) leaves. Molecules. 12: 1153-1162.
Pontes, J. G. D. M.; Fernandes, L. S.; dos Santos, R.; Tasic, L.; Fill, T. P. 2020. Virulence factors in the Phytopathogen-Host Interactions: An overview. Journal of Agricultural and Food Chemistry. 68: 7555-7570.
Raaman, N.; Mathiyazhagan, K.; Jegadeesh, R.; Divakar, S.; Vennila, S.; Balasubramanian, K. 2011. Antimicrobial activities of different organic extracts of nut shells of Juglans regia (walnut). Herbal Tech Industry. 20: 22.
Ruffa, M. J.; Wagner, M. L.; Suriano, M.; Vicente, C.; Nadinic, J.; Pampuro, S.; Salomón, H.; Campos, R. H.; Cavallaro, L. 2004. Inhibitory effect of medicinal herbs against RNA and DNA viruses. Antiviral Chemistry and Chemotherapy. 15(3): 153-159. https://doi.org/10.1177/095632020401500305
Sandu-Bălan, A.; Ifrim, I. L.; Patriciu, O. I.; Ștefănescu, I. A.; Fînaru, A. L. 2024. Walnut by-products and elderberry extracts-sustainable alternatives for human and plant health. Molecules. 29(2). https://doi.org/10.3390/molecules29020498
Sharma, M.; Sharma, M.; Sharma. M. 2022. A comprehensive review on ethnobotanical, medicinal and nutritional potential of walnut (Juglans regia L.). Proceedings of the Indian National Science Academy. https://doi.org/10.1007/s43538-022-00119-9
Silva, I. C.; Polaquini, C. R.; Regasini, L. O.; Ferreira, H.; Pavan, F. R. 2017. Evaluation of cytotoxic, apoptotic, mutagenic, and chemo- preventive activities of semi-synthetic esters of gallic acid. Food and Chemical Toxicology. 105: 300-307.
Singleton, V. L.; Rossi, J. A. 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 16: 144-158.
Soto-Maldonado, C.; Caballero-Valdés, E.; Santis-Bernal, J.; Jara-Quezada, J.; Fuentes-Viveros, L.; Zúñiga-Hansen ME. 2022. Potential of solid wastes from the walnut industry: Extraction conditions to evaluate the antioxidant and bioherbicidal activities. Electronic Journal of Biotechnology 58: 25-36.
Vieira, V.; Pereira, C.; Abreu, R. M.; Calhelha, R. C.; Alves, M. J.; Coutinho, J. A. P.; Ferreira, O.; Barros L.; Ferreira ICFR. 2020. Hydroethanolic extract of Juglans regia L. green husks: A source of bioactive phytochemicals. Food and Chemical Toxicology. 137: 111189. https://doi.org/10.1016/j.fct.2020.111189
Villamil-Galindo, E.; Piagentini, A. 2024. Green solvents for the recovery of phenolic compounds from strawberry (Fragaria x ananassa Duch) and apple (Malus domestica) agro-industrial bio-wastes. Revista de la Facultad de Ciencias Agrarias. Universidad Nacional de Cuyo. Mendoza. Argentina. 56(1): 149-160. DOI: https://doi.org/10.48162/rev.39.131
Viola, C. M.; Torres-Carro, R.; Cartagena, E.; Isla, M. I.; Alberto, M. R.; Arena, M. E. 2018. Effect of wine wastes extracts on the viability and biofilm formation of Pseudomonas aeruginosa and Staphylococcus aureus Strains. Evidence-Based Complementary and Alternative Medicine. https://doi.org/10.1155/2018/9526878
Vu, T. T.; Kim, H.; Tran, V. K.; Vu, H. D.; Hoang, T. X.; Han, J. W.; Choi, Y. H.; Jang, K. S.; Choi, G. J.; Kim J. C. 2017. Antibacterial activity of tannins isolated from Sapium baccatum extract and use for control of tomato bacterial wilt. PLoS ONE. 12: 1-12.
Yabalak, E.; Erdogan Eliuz, E. A. 2021. Green synthesis of walnut shell hydrochar, its antimicrobial activity and mechanism on some pathogens as a natural sanitizer. Food Chemistry. 366. https://doi.org/10.1016/j.foodchem.2021.130608
Yang, J.; Chen, C.; Zhao, S.; Ge, F.; Liu, D. 2014. Effect of solvents on the antioxidant activity of walnut (Juglans regia L.) s.hell extracts. Journal of Food and Nutrition Research. 2: 621-626.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2018 Revista de la Facultad de Ciencias Agrarias UNCuyo

Esta obra está bajo una licencia internacional Creative Commons Reconocimiento-NoComercial-CompartirIgual 3.0.
Aquellos autores/as que tengan publicaciones con esta revista, aceptan las Políticas Editoriales.










.jpg)



