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PALABRAS CLAVES RESUMEN 
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Kuratowski. 

En este trabajo se presenta un modelo geométrico para describir la dinámica celular mediante el 
uso de celdas de Voronoi. Se estudian las condiciones bajo las cuales dichas celdas, construidas 
a partir de núcleos celulares en un dominio compacto, y modeladas como celdas de Voronoi, 
convergen en sentido de Kuratowski y de Hausdorff. Para ello, se formaliza el desplazamiento de 
una célula como una sucesión de sitios que tiende a una posición final, y se prueba que las 
correspondientes celdas convergen topológicamente. La división celular (mitosis) se modela 
como la adición de un nuevo sitio, mientras que la muerte se representa mediante celdas con 
peso, aumentando progresivamente dicho peso hasta anular la celda. Los resultados permiten 
establecer criterios matemáticos precisos para simular dinámicas celulares de manera estable. 
Este enfoque aporta una base formal al estudio de procesos biológicos mediante herramientas 
de la teoría de análisis lineal. Se muestran ejemplos de implementación de la simulación en el 
plano bidimensional. 

 
Modeling cell dynamics using Voronoi cells 

KEYWORDS ABSTRACT 
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In this work, a geometric model is presented to describe cellular dynamics using Voronoi cells. 
The conditions under which these cells, constructed from nuclei of cell within a compact domain 
and modeled as Voronoi cells, converge in the Kuratowski and Hausdorff sense, are studied. To 
this end, the displacement of a cell is formalized as a sequence of sites converging to a final 
position, and it is shown that the corresponding cells converge topologically. Cell division 
(mitosis) is modeled as the addition of a new site, while death is represented by weighted cells, 
increasing that weight progressively until the cell is nullified. The results allow for the 
establishment of precise mathematical criteria to simulate cellular dynamics in a stable manner. 
This approach provides a formal basis for the study of biological processes using tools from linear 
analysis theory. Examples of the simulation implemented in the two-dimensional plane are 
presented. 

 

1. Introducción 

Un diagrama o teselación de Voronoi es una 
partición del espacio euclídeo determinada por la 
cercanía a puntos pertenecientes a un conjunto 
dado, T, de sitios generadores. A los elementos de 
esta partición se los denomina celda de Voronoi. La 
geometría y propiedades de celdas y diagramas 

dependen de la función distancia elegida para medir 
la cercanía entre puntos y de las características del 
conjunto generador T. Los primeros hallazgos se 
remontan a Descartes (1656), cuando publica que el 
sistema solar estaba compuesto por vórtices y 
regiones convexas formadas por materia que giraba 
alrededor de estrellas fijas. Dirichlet (1850) lo utiliza 
en el espacio tridimensional y Voronoi (1908) 
generaliza el concepto a espacios arbitrarios Rn.  El 
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dual geométrico de la teselación de Voronoi fue 
propuesta por Delaunay (1934) y se la denomina 
triangulación de Delaunay. A su vez, el método fue 
redescubierto en otros campos, recibiendo otras 
denominaciones, tales como los polígonos de 
Thiessen (1911) en meteorología, las células de 
Wigner-Seitz (1933), y las zonas de Brillouin (1930) 
en física del estado sólido. Sin embargo, los 
diagramas de Voronoi se popularizaron recién en 
1985, con el avance tecnológico y científico, por sus 
aplicaciones en la geometría computacional 
(Preparata y Shamos, 1985). 

Por otro lado, la teoría de desigualdades lineales ha 
sido particularmente valiosa para obtener 
información geométrica de las celdas deterministas 
de Voronoi, En el espacio euclidiano, una celda 
clásica de Voronoi puede representarse como el 
conjunto solución de un sistema de desigualdades 
lineales y, es aquí donde dicha teoría contribuye 
fuertemente. Cuando el conjunto de sitios 
involucrados en la celda es infinito, éstas se 
representan por sistemas lineales semi-infinitos 
(LSIS, por sus siglas en inglés). Algunos trabajos que 
utilizan herramientas de LSIS para estudiar celdas de 
Voronoi son Voigt (2008), Goberna et al. (2012) y 
Goberna et. al. (2020). Recientemente, Ridolfi y Vera 
de Serio (2023) aplicaron resultados conocidos sobre 
LSIS en celdas alejadas de Voronoi y determinaron un 
radio robusto de factibilidad para dichas celdas, 
considerando incertidumbre en los sitios 
involucrados. 

Otras generalizaciones posibles de teselaciones de 
Voronoi, son las generadas por funciones de 
distancias ponderadas con pesos (Aurenhammer y 
Edelsbrunner, 1984; Zou et al., 2024; Fan y Raichel, 
2025). En particular, Bock y coautores (Bock et al., 
2010), simulan la dinámica pluricelular en dos 
dimensiones, mostrando la viabilidad del método de 
Voronoi para generar formas celulares realistas. En 
dicho trabajo, utilizan funciones de distancia 
ponderada para definir celdas de Voronoi 
generalizadas, como base para la descripción de 
células dentro de tejidos epiteliales, representando 
las interacciones entre células mediante densidades 
de fuerza, adhesivas y repelentes, en los bordes de 
contacto celular. Esto motiva el interés en estudiar 
un modelado geométrico y dinámico que reproduzca 
las formas de las células observadas y simule su 
interacción y movimiento. En este trabajo 
presentamos una propuesta de formulación sencilla 
mediante el uso de una teselación de Voronoi 
adecuadamente ponderada, incorporando, en 
algunos casos, la teoría y herramientas de LSIS. 

El objetivo de este trabajo es modelar distintas 
etapas del ciclo celular con celdas de Voronoi. En 
particular, se realiza un modelo simplificado del 
nacimiento, movimiento y muerte celular, a través 
de diagramas de Voronoi, utilizando la teoría de 
análisis convexo y sistemas lineales semi-infinitos.  
En la próxima sección, veremos teoría asociada a 
celdas y diagramas de Voronoi, multifunciones y 
convergencias de Hausdorff y Kuratowski. 
Posteriormente, se modela matemáticamente las 
tres etapas del ciclo celular y se hace un análisis de 
convergencia de Kuratowski y Hausdorff. 
Finalmente, se realiza una breve conclusión. 

2. Materiales y métodos 

Para analizar la dinámica celular se utilizará un 
modelo basado en celdas de Voronoi. Dado un 
conjunto de sitios T⊂ℝm que contiene al menos dos 
elementos, decimos que la celda de Voronoi de s∈T 
es el conjunto de puntos que se encuentra más cerca 
del sito s que del resto de los sitios en T, es decir: 

𝑉𝑇(𝑠) ≔ {𝑥 ∈ ℝ𝑚: 𝑑(𝑥, 𝑠) ≤ 𝑑(𝑥, 𝑇 ∖ {𝑠}) }, (1) 

donde 𝑑(𝑥, 𝑦) = ‖𝑥 − 𝑦‖ representa la distancia en 
ℝ𝑚 dada por la norma euclídea ‖. ‖ y 𝑑(𝑥, 𝐴) =
ìnf

𝑎∈A 
𝑑(𝑥, 𝑎) es la distancia de un punto a un 

conjunto. El diagrama de Voronoi de 𝑇 es la familia 
de celdas generadas por cada sitio 𝑠 en 𝑇, e.d.: 
𝑉𝑜𝑟(𝑇) ≔ {𝑉𝑇(𝑠) ∶  𝑠 ∈ 𝑇}. 
En algunos casos se utilizará la siguiente 
representación de la celda como conjunto solución 
de un sistema lineal de inecuaciones (Voigt, 2008): 
 

𝑉𝑇(𝑠) ≔ {𝑥 ∈ ℝ𝑚:  (𝑡 − 𝑠)𝑇𝑥 ≤
‖𝑡‖2 − ‖𝑠‖2 

2
, 𝑡 ∈ 𝑇 }  (2) 

donde 𝑥T𝑦 representa el producto escalar usual. 
Esta representación lineal permite mostrar que, para 
𝑇 finito, 𝑉𝑇(𝑠) es un poliedro convexo cerrado 
(Goberna et al., 2012). 
El modelo se basa en considerar una porción de 
tejido constituido por cierta cantidad de  𝑟 + 1 de 
células, cada una de ellas será representada por una 
celda de Voronoi, donde los sitios simularán los 
núcleos de las células. Se considerará  𝑇 =
{𝑠, 𝑡1, 𝑡2, … , 𝑡𝑟} ⊆ ℝ𝑚  al conjunto de sitios. Si bien 
todo el trabajo está desarrollado en un espacio 
genérico ℝ𝑚, la interpretación e implementación de 
las simulaciones están realizadas para 𝑚 = 2, es 
decir, considerando un tejido bidimensional. 
Para el movimiento celular, se simulará el 
movimiento de una única célula, a través del 
movimiento de su núcleo 𝑠 y se supondrá que el 
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resto de las 𝑟 células restantes mantienen sus 
núcleos 𝑡1, 𝑡2, … , 𝑡𝑟 , fijos, aunque su geometría se 
modificará en función de la célula que se mueve, 
como se muestran en los ejemplos de simulaciones 
realizados. Este movimiento será discreto, y se 
modela a través de una sucesión de sitios {𝑠𝑛} que 
convergen a una posición final s, es decir, 𝑠𝑛 → 𝑠  en 
ℝ𝑚. Como 𝑠 es un punto aislado de 𝑇, se considera, 
sin pérdida de generalidad, que 𝑠𝑛 ∉  𝑇 \{𝑠} para 
cada 𝑛  ∈  ℕ.  
Debido a que, al mover la célula, cambia el conjunto 
de sitios (núcleos) se define, además,  

𝑇′ = 𝑇\{𝑠} ;  𝑇𝑛 = 𝑇′ ∪ {𝑠𝑛}                                       (3) 

 
y la multifunción 𝒱: ℝ𝑚 ⇉ ℝ𝑚, definida como: 

𝒱(𝑠̅) ≔ {𝑥 ∈ ℝ𝑚:  (𝑡 − 𝑠̅)𝑇𝑥 ≤
‖𝑡‖2 − ‖𝑠‖2 

2
,   𝑡 ∈ 𝑇 ∖ {𝑠} } (4) 

que modela la célula que se mueve, generada por el 
sitio 𝑠̅, en reemplazo del sitio 𝑠. 
Similarmente, para modelar el caso del nacimiento, 
en este caso, la mitosis, se parte del supuesto de que 
la célula que se reproduce es la celda con sitio 𝑠, y a 
partir de allí, la nueva celda (célula) se desplazará 
hasta finalizar en algún punto 𝑠̅. Por lo tanto, se 
utiliza el mismo modelo que el del movimiento, pero 
se agrega un nuevo sitio al principio. 
Para modelar la muerte celular, se aplica una nueva 
definición de celda, teniendo en cuenta la teoría de 
Nguyen et al. (2015), en donde se utilizan celdas de 
Voronoi con pesos. Para un conjunto de sitios 𝑇, se 

define la celda de Voronoi de 𝑡  ∈  𝑇 con peso 𝛼 ∈
[0,1] como: 

𝑉𝑇
𝛼(𝑡̅) ≔ {𝑥 ∈ ℝ𝑚: ‖𝑥 − 𝑡̅‖2 − 𝛼‖𝑡̅ − 𝑠‖2 

                ≤ ‖𝑥 − 𝑡‖2 − 𝛼‖𝑡 − 𝑠‖2, 𝑡 ∈ 𝑇\{𝑡̅}}.                 (5) 

Se simula la muerte de una célula con núcleo en el 
sitio s aumentando el peso de las celdas vecinas, con 
las que 𝑉𝑇(𝑠) comparte caras, hasta que 𝑉𝑇(𝑠) = {𝑠} 
y ahí, se puede considerar que dicha célula “ha 
muerto'”.   
Para analizar cierta estabilidad en estos modelos, se 
estudia una propiedad cualitativa utilizando 
herramientas del análisis convexo en relación a la 
convergencia de conjuntos. Se muestra que, si el 
núcleo converge a un sitio fijo final, esto implica la 
convergencia de las células a la célula generada por 
el sitio final.  
Este análisis se realizará utilizando la noción de 
excedente de un conjunto sobre otro y las 
convergencias en sentido de Kuratowski y Hausdorff 
(Luchetti, 2006), que se definen a continuación: 
Dados dos conjuntos cerrados no vacíos 𝐴 y 𝐵, 
definimos el excedente de 𝑨 sobre 𝑩 como 

𝑒(𝐴, 𝐵) ≔ sup
𝑎∈A 

𝑑(𝑎, 𝐵),  considerando 𝑒(𝐴, 𝐵) = ∞ 

cuando 𝐵 = ∅ y 𝐴 ≠ ∅. 
 
Definición 1: (Convergencia de Hausdorff) Una 
sucesión {𝐴𝑛} de conjuntos cerrados en ℝ𝑚, 
converge en el sentido de Hausdorff al conjunto 𝐴, si  

𝑒(𝐴𝑛, 𝐴) → 0  y  𝑒(𝐴, 𝐴𝑛) → 0, 
cuando 𝑛 → ∞. En este caso se utiliza la notación: 

𝐴𝑛

𝐻
→ A. 

 
Definición 2: (Convergencia de Kuratowski) Una 
sucesión {𝐴𝑛} de conjuntos cerrados en ℝ𝑚, 
converge al conjunto 𝐴 en el sentido de Kuratowski 
si 

𝐿𝑠𝐴𝑛 ⊆ 𝐴 ⊆ 𝐿𝑖𝐴𝑛, 
donde 𝐿𝑖𝐴𝑛 es el límite inferior de la sucesión, 
definido por: 

𝐿𝑖 𝐴𝑛: = { 𝑥 ∈  ℝ𝑚: 𝑥 = lim
𝑘→∞

𝑥𝑘 ;    𝑥𝑘 ∈ 𝐴𝑘 ,   𝑘 ≥ 𝑁}, 

para algún 𝑁 ∈ ℕ  y 𝐿𝑠𝐴𝑛 es el límite superior de la 
sucesión y está definido por: 

𝐿𝑠𝐴𝑛: = { 𝑥 ∈  ℝ𝑚: 𝑥 = lim
𝑘→∞

𝑥𝑘 ;  𝑥𝑘 ∈ 𝐴𝑛𝑘
;  {𝑛𝑘}  ⊂ ℕ}. 

En este caso se utiliza la notación: 𝐴𝑛

𝐾
→ A. 

Para comparar resultados entre estas convergencias 
se utilizará la siguiente proposición (Ambrosio, 
2004): 
 
Proposición 1: Si 𝐴 y 𝐴𝑛,  𝑛 ∈ ℕ, son conjuntos 

cerrados en ℝ𝑚, entonces: 𝐴𝑛

𝐻
→ A implica que:       

𝐴𝑛

𝐾
→ A. El recíproco es verdadero si todos estos 

conjuntos son subconjuntos de un mismo conjunto 
compacto.  
Finalmente, se utilizan implementaciones de 
Voronoi en el lenguaje Python para realizar las 
simulaciones en ℝ2. En particular se utiliza la 
biblioteca Scipy que incluye el cálculo de celdas de 
Voronoi a partir del sofware Qhull (Barber et. al, 
1996). 

3. Resultados y Discusión 

Movimiento celular 

Para simular el movimiento celular, debe 
demostrarse -utilizando celdas de Voronoi- que una 
celda puede desplazarse a otro sitio a través del 
tejido en el que se encuentra. En este caso, {𝑠𝑛} 
representa la posición que va tomando el núcleo de 
una célula a medida que se mueve hasta la posición 
final s, y, de manera análoga, 𝑉𝑇𝑛

(𝑠𝑛) representa la 

posición que va tomando la célula a medida que se 
mueve hasta la posición final 𝑉𝑇(𝑠), como lo muestra 
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la siguiente proposición, en sentido de convergencia 
de Kuratowski. 

Proposición 2: (Convergencia de Kuratowski para el 
movimiento celular). Sea {𝑠𝑛} una sucesión de 
puntos en ℝ𝑚 y sean 𝑇′ y 𝑇𝑛 los conjuntos de sitios 
 definidos en (3). Si 𝑠𝑛 →  𝑠, entonces 

𝑉𝑇𝑛
(𝑠𝑛)

𝐾
→ 𝑉𝑇(𝑠). 

Demostración. Observemos que de la ec. (1) se tiene 
que 𝑉𝑇(𝑠) ≔ {𝑥 ∈ ℝ𝑚: 𝑑(𝑥, 𝑠) ≤ 𝑑(𝑥, 𝑇′) }  y de (3), 

 
𝑉𝑇𝑛

(𝑠𝑛) = {𝑥 ∈ ℝ𝑚: 𝑑(𝑥, 𝑠𝑛) ≤ 𝑑(𝑥, 𝑇𝑛\{𝑠𝑛})} 

        = {𝑥 ∈ ℝ𝑛: 𝑑(𝑥, 𝑠𝑛) ≤ 𝑑(𝑥, 𝑇′)}. (6) 

Consideremos los límites inferir y superior: 

𝐿𝑖𝑉𝑇𝑛
(𝑠𝑛) = {𝑥 ∈ ℝ𝑚: 𝑥 =   lim

𝑛→∞
𝑥𝑛 ,    𝑥𝑛 ∈ 𝑉𝑇𝑛

(𝑠𝑛),   𝑛 ≥ 𝑁0},  

para algún 𝑁0 ∈ ℕ,  y 

𝐿𝑠𝑉𝑇𝑛
(𝑠𝑛) = {𝑥 ∈ 𝑅𝑚: 𝑥 = lim

𝑘→∞
𝑥𝑘 , 𝑥𝑘 ∈ 𝑉𝑇𝑛𝑘

(𝑠𝑛𝑘
),   {𝑛𝑘}  ⊂ ℕ} 

Se demostrará que 𝑉𝑇(𝑠) ⊆ 𝐿𝑖𝑉𝑇𝑛
(𝑠𝑛): Sea 𝑎 ∈

𝑉𝑇(𝑠), para cada 𝑛 ∈ ℕ, se toma 𝑎𝑛 ∈ 𝑉𝑇𝑛
(𝑠𝑛) tal 

que 𝑑(𝑎,  𝑎𝑛) =  𝑑 (𝑎,  𝑉𝑇𝑛
(𝑠𝑛)). Tal 𝑎𝑛 existe 

porque 𝑉𝑇𝑛
(𝑠𝑛) es cerrado, convexo y no vacío.  

Si {𝑎𝑛}𝑛∈ℕ no converge a a cuando 𝑛  →  ∞,  
enconces existe ε  >  0 y una subsucesión 

{𝑠𝑛𝑘
} tal que 𝑑 (𝑎, 𝑉𝑇𝑛

(𝑠𝑛𝑘
)) > ε. Como 𝑠𝑛 →  𝑠, 

entonces 𝑠𝑛𝑘
→ 𝑠 cuando 𝑘  →  ∞. Además, 𝐵ε(𝑎) ∩

𝑉𝑇𝑛𝑘
(𝑠𝑛𝑘

) = ∅, para todo 𝑘 ∈ 𝑁. 

Si se define la multifunción 𝒱:  ℝ𝑚  ⇉ ℝ𝑚 como en 
(4), aplicando el Teorema 1 de Goberna et al. 2012, 
se tiene que 𝒱 es semicontinua inferiormente en s, 
ya que s es un punto aislado de T. Como 𝐵ε(𝑎) ∩
𝑉𝑇(𝑠) ≠ ∅, existe un abierto W tal que 𝑠 ∈
𝑊   y 𝐵ε(𝑎) ∩ 𝒱(𝑣) ≠ ∅, para todo 𝑣 ∈ W. Del 
hecho de que 𝑠𝑛𝑘

→ 𝑠, existe 𝑛 ∈ ℕ   tal que si 𝑘 >

𝑁, entonces 𝑠𝑛𝑘
∈ 𝑊.  Luego, 𝐵ε(𝑎) ∩ 𝒱(𝑠𝑛𝑘

) =

𝐵ε(𝑎) ∩ 𝑉𝑇𝑛𝑘
(𝑠𝑛𝑘

) ≠ ∅, lo cual es absurdo. Esta 

contradicción implica que 𝑎𝑛 → 𝑎. Así, 𝑎 ∈
𝐿𝑖𝑉𝑇𝑛

(𝑠𝑛) y, por lo tanto, 𝑉𝑇(𝑠) ⊆ 𝐿𝑖𝑉𝑇𝑛
(𝑠𝑛). 

Se mostrará ahora que 𝐿𝑠𝑉𝑇𝑛
(𝑠𝑛) ⊆ 𝑉𝑇(𝑠):  Sea 𝑎 ∈

𝐿𝑠𝑉𝑇𝑛
 (𝑠𝑛). Entonces, existe una sucesión {𝑎𝑘}𝑘 ∈

ℕ ⊆ ℝ𝑛 tal que 𝑎𝑘 →  𝑎 y 𝑎𝑘 ∈ 𝑉𝑇𝑛𝑘
(𝑠𝑛𝑘

), donde 

{𝑛𝑘} es una subsucesión de enteros. Se quiere 
probar que 𝑎 ∈ 𝑉𝑇(𝑠), es decir, que 𝑑(𝑎, 𝑠) ≤
𝑑(𝑎, 𝑇′). 

Como {𝑠𝑛𝑘
}𝑛𝑘∈ℕ es una subsucesión de {𝑠𝑛  }𝑛∈ℕ, y 

𝑠𝑛 → 𝑠, entonces 𝑠𝑛𝑘
→  𝑠. Además, como 𝑎𝑘 ∈

𝑉𝑇𝑛𝑘
(𝑠𝑛𝑘

), se tiene que  𝑑(𝑎𝑘 , 𝑠𝑛𝑘
) ≤ 𝑑(𝑎𝑘 , 𝑇′). Así, 

dado ε  > 0, existe 𝑁 ∈ ℕ tal que si 𝑘 ≥ 𝑁 entonces: 

𝑑(𝑎, 𝑎𝑘) <
ε

2
  y 𝑑(𝑠𝑛𝑘

, 𝑠) <
ε

2
.  

Luego, 
𝑑(𝑎, 𝑠) ≤ 𝑑(𝑎, 𝑎𝑘) + 𝑑(𝑎𝑘 , 𝑠𝑛𝑘

) + 𝑑(𝑠𝑛𝑘
, 𝑠) 

                          < ε + 𝑑(𝑎𝑘 , 𝑇′),  

para todo 𝑘 > 𝑁. Como 𝑑(𝑎𝑘 , 𝑇′) → 𝑑(𝑎, 𝑇′) 
cuando 𝑘 → ∞, se obtiene que 𝑑(𝑎, 𝑠) < ε +
𝑑(𝑎, 𝑇′), para todo ε > 0. Esto implica que 𝑑(𝑎, 𝑠) ≤
𝑑(𝑎, 𝑇′). Luego, 𝑎 ∈ 𝑉𝑇(𝑠) y, por lo tanto, 
𝐿𝑠𝑉𝑇𝑛

(𝑠𝑛) ⊆ 𝑉𝑇(𝑠). 

Se ha probado así que 𝐿𝑠𝑉𝑇𝑛
(𝑠𝑛) ⊆ 𝑉𝑇(𝑠) ⊆

𝐿𝑖𝑉𝑇𝑛
(𝑠𝑛) y, por Definición 2, se tiene que 

𝑉𝑇𝑛
(𝑠𝑛)

𝐾
→ 𝑉𝑇(𝑠). 

Para que las celdas de Voronoi converjan en sentido 
Hausdorff, por Definición 1, debe cumplirse que: 

𝑒 (𝑉𝑇(𝑠), 𝑉𝑇𝑛
(𝑠𝑛)) → 0,  y 𝑒 (𝑉𝑇𝑛

(𝑠𝑛), 𝑉𝑇(𝑠)) → 0, 

para todo  que 𝑛 ∈ ℕ. 

Esto se cumple bajo el supuesto de que las celdas 
estén en un dominio compacto, como se muestra en 
la Proposición 2. El siguiente ejemplo muestra que, 
sin esta hipótesis, no se puede garantizar la 
convergencia de Hausdorff.  

Ejemplo 1: Sea 𝑇 = {𝑎, 𝑠, 𝑏} ⊂ ℝ2,  donde: 

 𝑎 = (−2,0), 𝑠 = (0,0)  y 𝑏 = (2,0) (ver Figura 1). 

 
Figura 1. Diagrama de Voronoi de 𝑇 = {𝑎, 𝑠, 𝑏}. 

 
Sea {𝑠𝑛}𝑛∈ℕ ⊂ ℝ2 una sucesión definida por 𝑠𝑛 =

(0,
1

𝑛
). Sea 𝑇𝑛 = {𝑎, (0,

1

𝑛
) , b}. Es claro que 𝑠𝑛 → 𝑠. 

La recta que une los puntos b y 𝑠𝑛 , está dada por: 

𝑦̂𝑛(𝑥) = −
1

2𝑛
𝑥 +

1

𝑛
 y la mediatriz entre el segmento 

que une los puntos b y 𝑠𝑛, es decir, la cara que 
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comparten las celdas 𝑉𝑇𝑛
(𝑏) y 𝑉𝑇𝑛

(𝑠𝑛), está dada 

por: 𝑦𝑛(𝑥) = 2𝑛(𝑥 − 1) +
1

2𝑛
, tal como lo muestra la 

Figura 2. 

Dado que 𝑉𝑇(𝑠) = {(𝑥, 𝑦) ∈ ℝ2: −1 ≤ 𝑥 ≤ 1}, 
si (𝑛, 𝑦) ∈ 𝑉𝑇𝑛

(𝑠𝑛), con 𝑛 ∈ ℕ, entonces: 

𝑒 (𝑉𝑇𝑛
(𝑠𝑛), 𝑉𝑇(𝑠)) ≥ 𝑑((𝑥, 𝑦), 𝑉𝑇(𝑠)) = |𝑥 − 1| = 𝑛 − 1 

Luego 𝑒 (𝑉𝑇𝑛
(𝑠𝑛), 𝑉𝑇(𝑠)) → ∞ cuando 𝑛 → ∞. Por lo 

tanto, 𝑉𝑇𝑛
(𝑠𝑛) no converge en sentido Hausdorff a 

𝑉𝑇(𝑠), aunque 𝑠𝑛 → 𝑠 (ver Figura 3) 

 

 
Figura 2. Diagrama de Voronoi de 𝑇𝑛 = {𝑎, 𝑠𝑛, 𝑏}. Nótese 

que a partir del punto (0,
1−4𝑛2

2𝑛
), cuando 𝑥 ≥ 0, la cara 

común de las celdas 𝑉𝑇𝑛
(𝑠𝑛) y 𝑉𝑇𝑛

(𝑏) coincide con la 

mediatriz del segmento 𝑠𝑛𝑏̅̅ ̅̅̅. 

  

Figura 3. Diagramas de Voronoi de 𝑇𝑛, para 𝑇1, 𝑇2 y 𝑇10. Puede observarse (de izquierda a derecha) que la celda generada 
por el sitio 𝑠𝑛 (lila claro) no converge a la celda generada por 𝑠, aunque 𝑠𝑛 → 𝑠. 

El ejemplo anterior muestra la necesidad de agregar 
la hipótesis de que las celdas estén contenidas en un 
conjunto compacto E. Si esto no ocurriese, se toma 
𝑉𝑇(𝑠) ∩ 𝐸 y 𝑉𝑇𝑛

(𝑠𝑛) ∩ 𝐸. Esta hipótesis, no 

representa un inconveniente en el modelo de la 
dinámica celular, ya que E puede representar una 
porción de tejido. 

 

Proposición 3: (Convergencia de Hausdorff en el 
movimiento celular). Sea 𝐸  ⊆  ℝ𝑚 compacto, de 
modo que 𝑉𝑇(𝑠) ⊆ 𝐸 y 𝑉𝑇𝑛

(𝑠𝑛) ⊆ 𝐸, para cada 𝑛  ∈

 ℕ. Si 𝑠𝑛 → 𝑠, entonces 𝑉𝑇𝑛
(𝑠𝑛) converge en sentido 

de Hausdorff a 𝑉𝑇(𝑠). 

Demostración. De la Proposición 2, se obtiene que 
𝑉𝑇𝑛

(𝑠𝑛) converge en sentido de Kuratowski a 𝑉𝑇(𝑠) 

y por Proposición 2, esto implica que 𝑉𝑇𝑛
(𝑠𝑛) 

converge en sentido de Hausdorff a 𝑉𝑇(𝑠), ya que 
𝑉𝑇(𝑠) y 𝑉𝑇𝑛

(𝑠𝑛) son conjuntos cerrados dentro de un 

compacto, para todo 𝑛  ∈  ℕ. 

 

División celular 

Para modelar la división celular, en este caso, la 
mitosis, se considera que la célula que se reproduce 
es la celda con sitio 𝑠 (que representa ahora el primer 
elemento de la sucesión {𝑠𝑛}). A partir de allí, la 
nueva celda se desplazará hasta finalizar en algún 
punto 𝑠̅ (ver Figura 4). Por lo tanto, se aplica el 
modelo del movimiento al conjunto de sitios 𝑇̅ =
𝑇 ∪ {𝑠̅}, donde 𝑠̅ es el límite de la sucesión {𝑠𝑛} 
y 𝑠1 = 𝑠, dando en este caso, 𝑇1̅ = 𝑇,  𝑇̅′ = 𝑇̅\{𝑠̅} =

𝑇   y  𝑇̅𝑛 = 𝑇̅′ ∪ {𝑠𝑛} = 𝑇 ∪ {𝑠𝑛}.  
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Figura 4. Diagramas de Voronoi de la división celular. Puede observarse (de izquierda a derecha) la división de la celda con 
sitio s (rosa) tras la aparición de una nueva celda con sitio 𝑠𝑛 (amarillo) que converge a la posición final 𝑠̅. 

Proposición 4: (Convergencia de Kuratowski para la 
división celular). Sea 𝑠̅ ∈ ℝ𝑚, 𝑇̅ = 𝑇 ∪ {𝑠̅} y 𝑇̅𝑛 =
𝑇 ∪ {𝑠𝑛} para todo 𝑛 ∈ ℕ. Si {𝑠𝑛} es una sucesión en 
ℝ𝑚 tal que 𝑠1 = 𝑠 y 𝑠𝑛 → 𝑠̅, entonces 𝑉𝑇̅𝑛

(𝑠𝑛) 

converge en sentido de Kuratowski a 𝑉𝑇̅(𝑠̅). 

Demostración. Se aplica directamente la 
Proposición 2 al conjunto 𝑇̅ = 𝑇 ∪ {𝑠̅}. Por lo tanto 

𝑉𝑇̅𝑛
(𝑠𝑛)

𝐾
→ 𝑉𝑇(𝑠̅). 

Se puede observar en la Figura  que si no 
tomamos 𝑠̅ ∈ int conv 𝑇′, el análisis no tiene 
sentido biológico, ya que el tamaño de la célula 
aumenta demasiado apenas se divide. 

 

 

 

Figura 5. Diagramas de Voronoi de la división si 𝑠̅ ∉ int conv 𝑇′. Puede observarse (de izquierda a derecha) la división 
de la celda con sitio s (rosa) y la aparición de una nueva celda con sitio 𝑠𝑛 (gris) de gran tamaño que converge a la 

posición final 𝑠̅. 

Proposición 5: (Convergencia de Hausdorff en la 
división celular). Sea 𝐸 ⊆ ℝ𝑚 compacto, de modo 
que 𝑉𝑇̅(𝑠̅) ⊆ 𝐸 y 𝑉𝑇̅𝑛

(𝑠𝑛) ⊆ 𝐸, para todo 𝑛 ∈ ℕ. Si 

𝑠𝑛 → 𝑠̅, entonces 𝑉𝑇̅𝑛
(𝑠𝑛) converge en sentido de 

Hausdorff a 𝑉𝑇̅(𝑠̅). 

Demostración. Si se considera la sucesión {𝑠𝑛} a 
partir de 𝑛 = 2, y como E es compacto, el análisis 
es equivalente al movimiento celular, 
sustituyendo T  por 𝑇, 𝑇′ por T y 𝑇𝑛  por 𝑇̅𝑛 = 𝑇 ∪
{𝑠𝑛}, por lo que, aplicando la Proposición 2, 

𝑉𝑇̅𝑛
(𝑠𝑛)

𝐻
→ 𝑉𝑇(𝑠̅). 

 

Muerte celular 

Finalmente, en esta última etapa, se considera la 
muerte celular como una célula que se une a otra y, 
así, disminuir en uno la cantidad de sitios. Es decir, 
hacer 𝑠𝑛 → 𝑠 sin retirar a s del conjunto 𝑇𝑛. Sin 
embargo, este tipo de razonamiento no garantiza la 
convergencia en sentido Hausdorff de las células, 
como lo muestra el siguiente ejemplo. 

Ejemplo 2:  Sean 𝑇 = {(0,0), (−1,1), (1,1)}  y   

𝑇̂𝑛 = 𝑇 ∪ {(0, −
1

𝑛
)} , 𝑛 ∈ ℕ  conjuntos de sitios en 

el conjunto compacto 𝐸 = [−2,2] × [−2,2] ⊂ ℝ2. 

Se considera  𝑠 = (0,0) y 𝑠𝑛 = (0, −
1

𝑛
), para cada 
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𝑛 ∈ ℕ.  Es claro que 𝑠𝑛 → 𝑠. Además (0,1) ∈ 𝑉𝑇̂𝑛
(𝑠)  

y  1 < 𝑑 ((0,1), 𝑉𝑇̂𝑛
(𝑠𝑛)) ≤ 𝑒 (𝑉𝑇(𝑠), 𝑉𝑇̂𝑛

(𝑠𝑛)),  para 

todo 𝑛 ∈ ℕ. Por lo tanto, 𝑒 (𝑉𝑇(𝑠), 𝑉T̂𝑛
(𝑠𝑛)) ↛ 0 y 

así 𝑉T̂𝑛
(𝑠𝑛) no converge en sentido Hausdorff a 

𝑉𝑇(𝑠), como se visualiza en la Figura 6, donde el 
diagrama realiza un cambio brusco cuando 
alcanza el límite. 

 

 

Figura 6. Diagramas de Voronoi en ℝ2 de 𝑇̂𝑛, para 𝑇̂1, 𝑇̂9 y en el límite 𝑇. Se puede observar (de izquierda a derecha) como 
la celda 𝑉T̂𝑛

(𝑠𝑛)  no converge en sentido Hausdorff a  𝑉𝑇(𝑠). 

 

Por este motivo, para modelar la muerte celular, se 
utiliza la generalización de celdas de Voronoi con 
peso 𝛼, definida en (3), para 𝛼 ∈ [0,1] 𝑦 𝑡̅ ∈ 𝑇.   Con 
los mismos argumentos dados por Voigt, 2008 para 
obtener la representación dada en ¡Error! No se 
encuentra el origen de la referencia. se obtiene que 
𝑉𝑇

𝛼(𝑡̅) es el conjunto de puntos 𝑥 ∈ ℝ𝑚  tale que:  

 𝑥𝑇(𝑡 − 𝑡̅)
1 − 𝛼

2
(‖𝑡‖2 − ‖𝑡̅‖2) + 𝛼𝑠𝑇(𝑡 − 𝑡̅), 𝑡 ∈ 𝑇\{𝑡̅}}, (7) 

Con esta nueva definición y, teniendo en cuenta que 
por (7), las celdas mantienen sus propiedades de 
linealidad y convexidad, se modela la muerte de la 
célula con núcleo en el sitio s aumentando el peso 𝛼 
en las celdas vecinas hasta lograr que 𝑉𝑇(𝑠) = {𝑠}, 
como se observa en la Figura . 

 

 

 
Figura 7. Diagramas de Voronoi con peso 𝛼𝑛, para T en ℝ2 , simulando la muerte celular, para 𝛼𝑛 = 1 −

1

𝑛
, con 𝑛 =

1 (𝑖𝑧𝑞𝑢𝑖𝑒𝑟𝑑𝑎), 𝑛 = 2 (𝑐𝑒𝑛𝑡𝑟𝑜) y cuando 𝑛 → ∞ (derecha). 
 

Proposición 6: (Convergencia de Kuratowski para 
muerte celular). Sean 𝑠 ∈ int conv 𝑇′ y sea 

𝑉𝑇
𝛼𝑛(𝑠) la celda definida en (5) con 𝑡̅ = 𝑠 y 𝛼𝑛 =

1 −
1

𝑛
,  para cada 𝑛 ∈ 𝑁. Entonces, 𝑉𝑇

𝛼𝑛(𝑠) 

converge en sentido de Kuratowski a {𝑠}. 

Demostración. En primer lugar, de (5), se tiene que 

𝑉𝑇
𝛼𝑛(𝑠) es el conjunto de puntos 𝑥 ∈ ℝ𝑚  tales que 

‖𝑥 − 𝑠‖2 ≤ ‖𝑥 − 𝑡‖2 − (1 −
1

𝑛
) ‖𝑠 − 𝑡‖2, 
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para todo 𝑡 ∈ 𝑇′. De Definición 2, los límites 

𝐿𝑖𝑉𝑇
𝛼𝑛(𝑠) y 𝐿𝑠𝑉𝑇

𝛼𝑛(𝑠) para {𝑉𝑇
𝛼𝑛(𝑠)} son: 

{𝑥 ∈ ℝ𝑚 :  𝑥 = lim
𝑛→∞

𝑥𝑛 , 𝑥𝑛 ∈ 𝑉𝑇
𝛼𝑛(𝑠), 𝑛 ≥ 𝑁}  

 para algún 𝑁 ∈ ℕ,   y 

{𝑥 ∈ ℝ𝑚 : 𝑥 = lim
𝑛→∞

𝑥𝑘 , 𝑥𝑘 ∈ 𝑉𝑇

𝛼𝑛𝑘 (𝑠),  {𝑛𝑘} ⊂ ℕ}, 

Respectivamente. Se demostrará que {𝑠} ⊆

𝐿𝑖𝑉𝑇
𝛼𝑛(𝑠): Claramente 𝑠 ∈ 𝑉𝑇

𝛼𝑛(𝑠) para todo 𝑛 ∈

ℕ. Sea 𝑎𝑛 = 𝑠 para todo 𝑛 ∈ 𝑁. Entonces, 

𝑎𝑛  converge a 𝑠 y 𝑎𝑛 ∈ 𝑉𝑇
𝛼𝑛(𝑠), para todo 𝑛 ∈ ℕ. 

Luego, 𝑠 ∈ 𝐿𝑖𝑉𝑇
𝛼𝑛(𝑠), y así, {𝑠} ⊆ 𝐿𝑖𝑉𝑇

𝛼𝑛(𝑠). 

Se verá ahora que 𝐿𝑠𝑉𝑇
𝛼𝑛(𝑠) ⊆ {𝑠}: Sea 𝑎 ∈

𝐿𝑠𝑉𝑇
𝛼𝑛(𝑠). Entonces, existe una subsucesión 

{𝑛𝑘} tal que 𝑥𝑛𝑘
∈ 𝑉𝑇

𝛼𝑛𝑘 (𝑠) y 𝑥𝑛𝑘
→ 𝑎. Como 

𝑥𝑛𝑘
∈ 𝑉𝑇

𝛼𝑛𝑘 (𝑠) entonces, sustituyendo 𝛼𝑛  por 

(1 −
1

𝑛𝑘
) en (7), se tiene que  

𝑥𝑛𝑘

𝑇(𝑡 − 𝑠)  ≤
1

2𝑛𝑘
 (‖𝑡‖2 − ‖𝑠‖2) + (1 −

1

𝑛𝑘
) 𝑠𝑇(𝑡 − 𝑠) 

luego, 

𝑥𝑛𝑘

𝑇(𝑡 − 𝑠) − 𝑠𝑇𝑡 + ‖𝑠‖2 ≤
1

2𝑛𝑘

(‖𝑡‖2 + ‖𝑠‖2 − 𝑠𝑇𝑡), 

(𝑥𝑛𝑘
− 𝑠)

𝑇
(𝑡 − 𝑠) ≤

1

2𝑛𝑘

(‖𝑡‖2 − 2𝑠𝑇𝑡 + ‖𝑠‖2). 

(𝑥𝑛𝑘
− 𝑠)

𝑇
(𝑡 − 𝑠) ≤

1

2𝑛𝑘

‖𝑡 − 𝑠‖2. 

Luego, cuando 𝑛𝑘 → ∞, (𝑎 − 𝑠)𝑇(𝑡 − 𝑠) ≤ 0,  para 
todo 𝑡 ∈ 𝑇′. 

Sea 𝑤 ∈ conv 𝑇′. Entonces, existen escalares 𝛽𝑡 > 0, 
𝑡 ∈ 𝑇′ tales que  ∑ 𝛽𝑡𝑡∈𝑇′ = 1 y 𝑤 = ∑ 𝛽𝑡𝑡𝑡∈𝑇′ . 
Luego, 

(𝑎 − 𝑠)𝑇(𝑤 − 𝑠) = (𝑎 − 𝑠)𝑇 (∑ 𝛽𝑡𝑡

𝑡∈𝑇′

− 𝑠)

= ∑ 𝛽𝑡

𝑡∈𝑇′

(𝑡 − 𝑠)

= ∑ 𝛽𝑡

𝑡∈𝑇′

(𝑎 − 𝑠)𝑇(𝑡 − 𝑠) ≤ 0. 

Así, (𝑎 − 𝑠)𝑇(𝑤 − 𝑠) ≤ 0,   para todo 𝑡 ∈ conv 𝑇′. 

Por hipótesis, 𝑠 ∈ int conv 𝑇′, luego existe 𝜀 > 0 tal 
que 𝑠 + 𝜀𝑧 ∈ conv 𝑇′ y 𝑠 − 𝜀𝑧 ∈ conv 𝑇′, para cada 
𝑧 ∈ 𝐵1(0𝑛).  Si se considera 𝑤 = 𝑠 + 𝜀𝑧, entonces  

 
(𝑎 − 𝑠)𝑇(𝑠 + 𝜀𝑧 − 𝑠) = (𝑎 − 𝑠)𝑇(𝜀𝑧) 
                                         = 𝜀(𝑎 − 𝑠)𝑇𝑧 
                                         ≤ 0. 

(8) 

Ahora, si se considera 𝑤 = 𝑠 − 𝜀𝑧, entonces 

 
(𝑎 − 𝑠)𝑇(𝑠 − 𝜀𝑧 − 𝑠)

= (𝑎 − 𝑠)𝑇(−𝜀𝑧)
= −𝜀(𝑎 − 𝑠)𝑇𝑧 ≤ 0. 

(9) 

Por (8) y (9), se tiene que (𝑎 − 𝑠)𝑇𝑧 = 0, para todo 

𝑧 ∈ 𝐵1(0𝑛). En particular, si 𝑧 =
𝑎−𝑠

‖𝑎−𝑠‖
, entonces 

(𝑎 − 𝑠)𝑇 𝑎−𝑠

‖𝑎−𝑠‖
= ‖𝑎 − 𝑠‖ = 0, y así, 𝑎 = 𝑠. Por lo 

tanto, 𝐿𝑠𝑉𝑇
𝛼𝑛(𝑠) ⊆ {𝑠}. 

Se ha probado así, que 𝑉𝑇
𝛼𝑛(𝑠)

𝐾
→ {𝑠}. 

Para analizar la convergencia de Hausdorff, al igual 
que en los dos casos anteriores, se agrega el 
supuesto de que las celdas estén contenidas en un 
conjunto compacto E, si esto no ocurriese, se toma 

𝑉𝑇
𝛼𝑛(𝑠) ∩ 𝐸. 

Proposición 3.2.6 (Convergencia de Hausdorff para 
muerte celular) Sea 𝐸 ⊆ ℝ𝑚 compacto, de modo 
que 𝑉𝑇

𝑛(𝑠) ⊆ 𝐸, para todo 𝑛 ∈ ℕ, y se supone 𝑠 ∈

int conv 𝑇′. Entonces, 𝑉𝑇
𝛼𝑛(𝑠) converge en sentido 

de Hausdorff a {𝑠}. 

Demostración. Si bien se puede utilizar la 
Proposición 1 para realizar esta demostración, se 
hará una demostración alternativa. 

Según Definición 1 se debe demostrar que  

𝑒 ({𝑠}, 𝑉𝑇
𝛼𝑛(𝑠)) → 0  y  𝑒(𝑉𝑇

𝛼𝑛(𝑠), {𝑠}) → 0. 

Se mostrará primero que 𝑒(𝑉𝑇
𝛼𝑛(𝑠), {𝑠}) → 0: Sea 

𝑥𝑛 ∈ 𝑉𝑇
𝛼𝑛(𝑠) tal que 𝑑(𝑥𝑛 , 𝑠) = 𝑒(𝑉𝑇

𝛼𝑛(𝑠), {𝑠}). 

Como E es compacto, existe 𝑥̅ ∈ 𝐸 y una subsucesión 
{𝑥𝑛𝑘

} tal que 𝑥𝑛𝑘
→ 𝑥̅ ∈ 𝐸. Por proposición 6, 

𝑉𝑇
𝛼𝑛(𝑠)

𝐾
→ {𝑠}, entonces 𝑥̅ ∈ 𝐿𝑠𝑉𝑇

𝛼𝑛(𝑠) ⊆ {𝑠}. Es 

decir, 𝑥̅ = 𝑠. Así, dado 𝜀 > 0, existe 𝑁 ∈ ℕ tal que si 

𝑘 > 𝑁, entonces 𝑑(𝑥𝑛𝑘
, 𝑠) < 𝜀.  

Del hecho de que ‖𝑥 − 𝑡‖2 − (1 −
1

𝑛+1
) ‖𝑠 − 𝑡‖2 es 

menor o igual a ‖𝑥 − 𝑡‖2 − (1 −
1

𝑛
) ‖𝑠 − 𝑡‖2, se 

obtiene que 𝑉𝑇
𝛼𝑛+1(𝑠) ⊆ 𝑉𝑇

𝛼𝑛(𝑠). Por lo tanto, 

𝑒(𝑉𝑇
𝛼𝑛+1(𝑠), {𝑠}) ≤ 𝑒(𝑉𝑇

𝛼𝑛(𝑠), {𝑠}). Luego, para cada 

𝑛 tal que 𝑛 > 𝑛𝑘, con 𝑘 > 𝑁, se cumple que 

𝑒(𝑉𝑇
𝛼𝑛(𝑠), {𝑠}) ≤ 𝑒 (𝑉𝑇

𝛼𝑛𝑘 (𝑠), {𝑠}) = 𝑑(𝑥𝑛𝑘
, 𝑠) < 𝜀. 
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Luego, 𝑒(𝑉𝑇
𝛼𝑛(𝑠), {𝑠}) → 0. 

Se verá ahora que 𝑒 ({𝑠}, 𝑉𝑇
𝛼𝑛(𝑠)) → 0: Esto se 

deduce de que 𝑠 ∈ 𝑉𝑇
𝛼𝑛(𝑠) para todo 𝑛 ∈ ℕ, lo que 

implica que  𝑒 ({𝑠}, 𝑉𝑇
𝛼𝑛(𝑠)) = 0,  para todo 𝑛 ∈ ℕ. 

Por lo tanto, 𝑉𝑇
𝛼𝑛(𝑠)

𝐻
→ {𝑠}. 

 

1. Conclusiones 

Los resultados presentados permiten interpretar los 
fenómenos de movimiento, la división (mitosis) y 
muerte celular desde una perspectiva geométrica 
basada en la teoría de celdas de Voronoi y las 
nociones de convergencia de Kuratowski y 
Hausdorff. 

En el caso del movimiento celular, se demostró que, 
si el núcleo de una célula se desplaza según una 
sucesión de puntos que converge a una posición fija 
dentro de un dominio compacto, entonces la 
correspondiente celda de Voronoi también converge 
en sentido de Kuratowski y Hausdorff. Este resultado 
no solo valida el uso de diagramas de Voronoi para 
simular dinámicas celulares, sino que también 
proporciona una base teórica sólida para asegurar la 
estabilidad del modelo ante desplazamientos 
discretos de los núcleos celulares. Este fenómeno -el 
desplazamiento de una célula a través de un tejido- 
puede observarse, por ejemplo, en la cicatrización 
del epitelio, donde los fibroblastos migran hacia la 
zona lesionada para generar nuevo tejido conectivo. 

Para el fenómeno la división celular, se modeló la 
mitosis como la adición de un nuevo sitio al conjunto 
de generadores. Al establecer que este nuevo sitio 
converge a una posición límite dentro del dominio, 
se logró demostrar la convergencia en ambos 
sentidos (Kuratowski y Hausdorff). Esta 
formalización se puede utilizar para describir 
procesos de proliferación celular, como la 
regeneración de tejidos o el crecimiento tumoral, en 
los que la estructura espacial de las células juega un 
rol central. 

El análisis de la muerte celular fue más desafiante, ya 
que la simple eliminación de un sitio no garantiza 
convergencia. Para resolver esto, se introdujo una 
nueva definición de celdas de Voronoi con peso, en 
donde se aumenta progresivamente el peso de las 
celdas contiguas a la celda que se desea eliminar, 
hasta que su dimensión tiende a cero, simulando así 
una célula cuyo volumen tiende a cero. Este enfoque 
no solo permite modelar el proceso de muerte 
celular desde una perspectiva geométrica, sino que 
también asegura la continuidad del sistema en 
términos topológicos, algo que no era posible en el 
modelo clásico. Se trata, por lo tanto, de una 

propuesta original que puede ser útil en contextos 
en los que es necesario simular muertes celulares 
programadas, como la apoptosis o ciertos procesos 
de remodelación tisular. 

En conjunto, estos resultados muestran que las 
nociones de convergencia de conjuntos aplicadas a 
celdas de Voronoi permiten formalizar y simular 
dinámicas celulares complejas con precisión 
matemática. Las propiedades de linealidad, 
convexidad y continuidad de las celdas juegan un 
papel central en esta construcción, y su preservación 
bajo ciertos supuestos garantiza la validez del 
modelo. 

Como línea futura, se propone ampliar el marco 
teórico a espacios tridimensionales y explorar 
condiciones más generales de convergencia, así 
como integrar este enfoque en sistemas 
computacionales que permitan validar los modelos 
con datos empíricos o experimentales. 
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4. Anexos 

Celdas sin peso: A continuación, se presenta el 
código en Python utilizado para generar celdas de 
Voronoi sin peso, a partir de un conjunto de sitios 
definidos manualmente. El código permite graficar 
las regiones resultantes y exportar la imagen 
generada en alta resolución. 

import numpy as np 
from matplotlib import pyplot as plt 
from scipy.spatial import distance 
import matplotlib 
matplotlib.rcParams['mathtext.fontset'] = 
'stix' 
matplotlib.rcParams['font.family'] = 
'STIXGeneral' 
 
sitios = np.array([[0.3,0],[-1,1],[1,1],[-
2,0],[0,-1],[2.5,-0.1], 
    [2,-1.5], [-1.5,-1.75]])  
#se colocan las coordenadas de los sitios    
 
x = np.linspace(-2.5,2.5,1000) 
y = np.linspace(-2,2,1000) 
x,y = np.meshgrid(x,y) 
 
points =  np.stack((x.ravel(), y.ravel()), 
axis=1) 
 
distances = distance.cdist(points, sitios)  
 
celdas = 
np.argmin(distances,axis=1).reshape(x.shap
e) 
  
plt.figure(figsize=(10,7)) 
plt.contour(celdas, extent=(-2.5, 2.6, -2, 
2),linewidths=1, colors='k') 
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plt.contourf(celdas, extent=(-2.5,2.6,-
2,2),cmap="Pastel1") 
 
plt.scatter(sitios[:, 0], sitios[:, 
1],marker='o', s=40,color='k') 
 
plt.xticks(size=24) 
plt.yticks(size=24) 
 
plt.text(0.3,0.1,'$ V_{T}(s)$', fontsize = 
28) 
 
plt.tight_layout() 
plt.savefig('Imagen1-4.jpg',dpi=300) 
 

Celdas con peso 

El siguiente script permite generar celdas de Voronoi 
con peso, simulando la desaparición progresiva de 
una célula. Este modelo fue adaptado a partir de un 
repositorio en línea y modificado para ajustarse al 
enfoque propuesto en este trabajo: 
https://gist.github.com/sunayana/a3a564058e9775
2f726ca65d56fab529. 

import itertools 
import numpy 
from scipy.spatial import ConvexHull 
from scipy.spatial import distance 
from matplotlib.collections import 
LineCollection 
from matplotlib import pyplot as plot 
import matplotlib   
matplotlib.rcParams['mathtext.fontset'] = 
'stix' 
matplotlib.rcParams['font.family'] = 
'STIXGeneral' 
 
def disc_uniform_pick(N): 

angle = (2 * numpy.pi) * 
numpy.random.random(N) 

   out = numpy.stack([numpy.cos(angle), 
numpy.sin(angle)], axis = 1) 
     out *= 
numpy.sqrt(numpy.random.random(N))[:,None] 
     return out 
     
def norm2(X): 

return numpy.sqrt(numpy.sum(X ** 2)) 
     
def normalized(X): 
   return X / norm2(X) 
     
def get_triangle_normal(A, B, C): 

return normalized(numpy.cross(A,B) 
+ numpy.cross(B, C) +                        
numpy.cross(C, A)) 
     
def get_power_circumcenter(A, B, C): 

   N = get_triangle_normal(A, B, C) 
   return (-.5 / N[2]) * N[:2] 
     
def is_ccw_triangle(A, B, C): 
   M = numpy.concatenate([numpy.stack([A, 
B, C]), numpy.ones((3, 1))], axis = 1) 
   return numpy.linalg.det(M) > 0 
     
def get_power_triangulation(S, R): 
    S_norm = numpy.sum(S ** 2, axis = 1) - 
R ** 2 
    S_lifted = numpy.concatenate([S, 
S_norm[:,None]], axis = 1) 
    if S.shape[0] == 3: 
        if is_ccw_triangle(S[0], S[1], 
S[2]): 
        return [[0, 1, 2]], 
numpy.array([get_power_circumcenter(*S_lif
ted)]) 
    else: 
        return [[0, 2, 1]], 
numpy.array([get_power_circumcenter(*S_lif
ted)]) 
     
     hull = ConvexHull(S_lifted) 
      

tri_list = tuple([a, b, c] if 
is_ccw_triangle(S[a], S[b], S[c])  

else [a, c, b]  for 
(a, b, c), eq in zip(hull.simplices,                   
hull.equations) if eq[2] <= 0) 

      
V = 
numpy.array([get_power_circumcenter(*
S_lifted[tri]) for tri in  

            tri_list]) 
     
     return tri_list, V 
     
def get_voronoi_cells(S, V, tri_list): 

vertices_set = 
frozenset(itertools.chain(*tri_list
)) 

       edge_map = { } 
for i, tri in    
enumerate(tri_list):  

            for edge in 
itertools.combinations(tri, 2): 
        edge = tuple(sorted(edge)) 
        if edge in edge_map: 
            edge_map[edge].append(i) 
        else: 
            edge_map[edge] = [i] 

voronoi_cell_map = { i : []    for 
i in vertices_set } 

        for i, (a, b, c) in 
enumerate(tri_list): 

for u, v, w in ((a, b, c), 
(b, c, a), (c, a, b)): 

edge = tuple(sorted((u, 
v))) 

if len(edge_map[edge]) == 
2: 

                 j, k = edge_map[edge] 
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if k == i:  
j, k = k, j 
U = V[k] - 
V[j] 
U_norm = 
norm2(U)     

voronoi_cell_map[u].append(((j, k), 
(V[j], U / U_norm, 0, U_norm))) 

    else:  
     A, B, C, D = S[u], S[v], S[w], V[i] 
     U = normalized(B - A) 
     I = A + numpy.dot(D - A, U) * U 
     W = normalized(I - D) 
     if numpy.dot(W, I - C) < 0: 
        W = -W  

voronoi_cell_map[u].append(((edge_m
ap[edge][0], -1), (D,  W, 0, 
None)))     
voronoi_cell_map[v].append(((-1, 
edge_map[edge][0]), (D, -W, None, 
0)))     

         
def order_segment_list(segment_list): 

first = min((seg[0][0], i) for i, seg 
in enumerate(segment_list))[1] 

segment_list[0], 
segment_list[first] = 
segment_list[first],                                                
segment_list[0] 

for i in range(len(segment_list) - 1): 
for j in range(i + 1, 
len(segment_list)): 

if segment_list[i][0][1] == 
segment_list[j][0][0]: 

            segment_list[i+1], 
segment_list[j] = 
segment_list[j],                                                      
segment_list[i+1] 
            break 
        return segment_list 
    return {i : 
order_segment_list(segment_list) for i, 
segment_list in            
voronoi_cell_map.items() } 
     
def display(S, R, tri_list, 
voronoi_cell_map): 
   fig, ax = plot.subplots() 
   plot.axis('equal') 
   plot.xlim(-4,4) 
   plot.xticks(size=12) 
   plot.yticks(size=12) 
   for Si, Ri in zip(S, R): 
      ax.add_artist( 

plot.Circle(Si, Ri, fill = True, 
alpha = .4, lw = 0., 

  color = '#8080f0', zorder = 1)) 
      plot.scatter(S[:, 0], S[:, 
1],marker='o', s=30,color='k') 
       plot.text(0,0.1,'$s$', fontsize = 
12) 
       edge_map = { } 
       for segment_list in 
voronoi_cell_map.values(): 
     for edge, (A, U, tmin, tmax) in 
segment_list: 
          edge = tuple(sorted(edge)) 
          if edge not in edge_map: 
        if tmax is None: 
            tmax = 10 
        if tmin is None: 
            tmin = -10 

edge_map[edge] = (A + tmin 
* U, A + tmax * U) 

        line_list = 
LineCollection(edge_map.values(), lw = 1., 
colors = 'k')  
        line_list.set_zorder(0) 
        ax.add_collection(line_list) 
     

        
plot.savefig('Muerte_pesos_cuadrado
s_5.jpg',dpi=300) 

       plot.show() 
     
def main(): 
     sample_count = 7 
     S = numpy.array([[0,0], 

[-1,1],[1,1],[-2,0], 
[-1,-2],[2.5,-0.1],                            
[2,-1.5]]) 

     s = numpy.array([S[0]]) 
     alpha = 0.999 

weight = alpha * 
(distance.cdist(S,s))  

     R = weight.flatten() 
     print(R)     
         

tri_list, V = 
get_power_triangulation(S, R) 

     
voronoi_cell_map = 
get_voronoi_cells(S, V, tri_list) 

     
display(S, R, tri_list, 
voronoi_cell_map) 

     
    if __name__ == '__main__':     main() 
  

 
 

https://revistas.uncu.edu.ar/ojs3/index.php/revicap

