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PALABRAS CLAVES RESUMEN
Celdas de Voronoi En este trabajo se presenta un modelo geométrico para describir la dindmica celular mediante el
Dinamica celular uso de celdas de Voronoi. Se estudian las condiciones bajo las cuales dichas celdas, construidas
Convergencia de Hausdorff ~ a partir de nucleos celulares en un dominio compacto, y modeladas como celdas de Voronoi,
Convergencia de convergen en sentido de Kuratowski y de Hausdorff. Para ello, se formaliza el desplazamiento de
Kuratowski. una célula como una sucesidn de sitios que tiende a una posicidn final, y se prueba que las
correspondientes celdas convergen topoldgicamente. La division celular (mitosis) se modela
como la adicién de un nuevo sitio, mientras que la muerte se representa mediante celdas con
peso, aumentando progresivamente dicho peso hasta anular la celda. Los resultados permiten
establecer criterios matematicos precisos para simular dindmicas celulares de manera estable.
Este enfoque aporta una base formal al estudio de procesos biolégicos mediante herramientas
de la teoria de andlisis lineal. Se muestran ejemplos de implementacion de la simulacién en el
plano bidimensional.
Modeling cell dynamics using Voronoi cells
KEYWORDS ABSTRACT
Voronoi cells In this work, a geometric model is presented to describe cellular dynamics using Voronoi cells.
Cellular dynamics The conditions under which these cells, constructed from nuclei of cell within a compact domain
Hausdorff convergence and modeled as Voronoi cells, converge in the Kuratowski and Hausdorff sense, are studied. To
Kuratowski convergence this end, the displacement of a cell is formalized as a sequence of sites converging to a final

position, and it is shown that the corresponding cells converge topologically. Cell division
(mitosis) is modeled as the addition of a new site, while death is represented by weighted cells,
increasing that weight progressively until the cell is nullified. The results allow for the
establishment of precise mathematical criteria to simulate cellular dynamics in a stable manner.
This approach provides a formal basis for the study of biological processes using tools from linear
analysis theory. Examples of the simulation implemented in the two-dimensional plane are
presented.

dependen de la funcidn distancia elegida para medir
la cercania entre puntos y de las caracteristicas del
conjunto generador T. Los primeros hallazgos se
remontan a Descartes (1656), cuando publica que el
sistema solar estaba compuesto por vortices y
regiones convexas formadas por materia que giraba
alrededor de estrellas fijas. Dirichlet (1850) lo utiliza
en el espacio tridimensional y Voronoi (1908)
generaliza el concepto a espacios arbitrarios R". El

1. Introducciéon

Un diagrama o teselacion de Voronoi es una
particion del espacio euclideo determinada por la
cercania a puntos pertenecientes a un conjunto
dado, T, de sitios generadores. A los elementos de
esta particidn se los denomina celda de Voronoi. La
geometria y propiedades de celdas y diagramas
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dual geométrico de la teselacién de Voronoi fue
propuesta por Delaunay (1934) y se la denomina
triangulacion de Delaunay. A su vez, el método fue
redescubierto en otros campos, recibiendo otras
denominaciones, tales como los poligonos de
Thiessen (1911) en meteorologia, las células de
Wigner-Seitz (1933), y las zonas de Brillouin (1930)
en fisica del estado sdlido. Sin embargo, los
diagramas de Voronoi se popularizaron recién en
1985, con el avance tecnoldgico y cientifico, por sus
aplicaciones en la geometria computacional
(Preparata y Shamos, 1985).

Por otro lado, la teoria de desigualdades lineales ha
sido  particularmente valiosa para obtener
informacion geométrica de las celdas deterministas
de Voronoi, En el espacio euclidiano, una celda
clasica de Voronoi puede representarse como el
conjunto solucién de un sistema de desigualdades
lineales y, es aqui donde dicha teoria contribuye
fuertemente. Cuando el conjunto de sitios
involucrados en la celda es infinito, éstas se
representan por sistemas lineales semi-infinitos
(LSIS, por sus siglas en inglés). Algunos trabajos que
utilizan herramientas de LSIS para estudiar celdas de
Voronoi son Voigt (2008), Goberna et al. (2012) y
Goberna et. al. (2020). Recientemente, Ridolfi y Vera
de Serio (2023) aplicaron resultados conocidos sobre
LSIS en celdas alejadas de Voronoi y determinaron un
radio robusto de factibilidad para dichas celdas,
considerando  incertidumbre en los sitios
involucrados.

Otras generalizaciones posibles de teselaciones de
Voronoi, son las generadas por funciones de
distancias ponderadas con pesos (Aurenhammer y
Edelsbrunner, 1984; Zou et al., 2024; Fan y Raichel,
2025). En particular, Bock y coautores (Bock et al.,
2010), simulan la dindmica pluricelular en dos
dimensiones, mostrando la viabilidad del método de
Voronoi para generar formas celulares realistas. En
dicho trabajo, utilizan funciones de distancia
ponderada para definir celdas de Voronoi
generalizadas, como base para la descripcién de
células dentro de tejidos epiteliales, representando
las interacciones entre células mediante densidades
de fuerza, adhesivas y repelentes, en los bordes de
contacto celular. Esto motiva el interés en estudiar
un modelado geométrico y dindmico que reproduzca
las formas de las células observadas y simule su
interaccion 'y movimiento. En este trabajo
presentamos una propuesta de formulacion sencilla
mediante el uso de una teselacién de Voronoi
adecuadamente ponderada, incorporando, en
algunos casos, la teoria y herramientas de LSIS.

El objetivo de este trabajo es modelar distintas
etapas del ciclo celular con celdas de Voronoi. En
particular, se realiza un modelo simplificado del
nacimiento, movimiento y muerte celular, a través
de diagramas de Voronoi, utilizando la teoria de
analisis convexo y sistemas lineales semi-infinitos.
En la proxima seccidn, veremos teoria asociada a
celdas y diagramas de Voronoi, multifunciones y
convergencias de Hausdorff y  Kuratowski.
Posteriormente, se modela matematicamente las
tres etapas del ciclo celular y se hace un analisis de
convergencia de Kuratowski y Hausdorff.
Finalmente, se realiza una breve conclusion.

2. Materiales y métodos

Para analizar la dindmica celular se utilizard un
modelo basado en celdas de Voronoi. Dado un
conjunto de sitios TCR™ que contiene al menos dos
elementos, decimos que la celda de Voronoi de seT
es el conjunto de puntos que se encuentra mas cerca
del sito s que del resto de los sitios en T, es decir:

Ve(s) ={x e R™:d(x,s) <d(x, T\ {s}} 6))

donde d(x,y) = ||x — y|| representa la distancia en
R™ dada por la norma euclidea ||| y d(x,A) =
igg d(x,a)es la distancia de un punto a un
a

conjunto. El diagrama de Voronoi de T es la familia
de celdas generadas por cada sitio s en T, e.d.:
Vor(T) = {V;(s) : s €T}

En algunos casos se utilizara la siguiente
representacion de la celda como conjunto solucién
de un sistema lineal de inecuaciones (Voigt, 2008):

t)|2 — |IslI?
S”” [Isll

Vr(s) = {x eR™: (t—s)"x 5

) tET} @
donde xTy representa el producto escalar usual.
Esta representacion lineal permite mostrar que, para
T finito, V;(s) es un poliedro convexo cerrado
(Goberna et al., 2012).

El modelo se basa en considerar una porcién de
tejido constituido por cierta cantidad de r 4+ 1 de
células, cada una de ellas serd representada por una
celda de Voronoi, donde los sitios simularan los
nucleos de las células. Se considerard T =
{s, ty,ty, ..., t,} S R™ al conjunto de sitios. Si bien
todo el trabajo estd desarrollado en un espacio
genérico R™, la interpretacion e implementacion de
las simulaciones estan realizadas para m = 2, es
decir, considerando un tejido bidimensional.

Para el movimiento celular, se simulara el
movimiento de una Unica célula, a través del
movimiento de su nucleo s y se supondra que el
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resto de las r células restantes mantienen sus
nucleos tq,t,, ..., t,, fijos, aunque su geometria se
modificard en funcién de la célula que se mueve,
como se muestran en los ejemplos de simulaciones
realizados. Este movimiento sera discreto, y se
modela a través de una sucesidn de sitios {s,} que
convergen a una posicidn final s, es decir, s,, = s en
R™. Como s es un punto aislado de T, se considera,
sin pérdida de generalidad, que s, € T \{s} para
cadan € N.

Debido a que, al mover la célula, cambia el conjunto
de sitios (nucleos) se define, ademas,

T"=T\{s} ; T,=T"U{sy} 3

y la multifuncion V: R™ 3 R™, definida como:
el = lIs]|? }
——, teT\{s} 1 4

que modela la célula que se mueve, generada por el
sitio §, en reemplazo del sitio s.

Similarmente, para modelar el caso del nacimiento,
en este caso, la mitosis, se parte del supuesto de que
la célula que se reproduce es la celda con sitio s,y a
partir de alli, la nueva celda (célula) se desplazara
hasta finalizar en algun punto §S. Por lo tanto, se
utiliza el mismo modelo que el del movimiento, pero
se agrega un nuevo sitio al principio.

Para modelar la muerte celular, se aplica una nueva
definicidén de celda, teniendo en cuenta la teoria de
Nguyen et al. (2015), en donde se utilizan celdas de
Voronoi con pesos. Para un conjunto de sitios T, se
define la celda de Voronoi de t € T con peso a €
[0,1] como:

V() = {x ER™: (t—35)Tx <

VEE) = {x € R™: |lx — El|* — allf — s|I?
< llx —tlI?> — allt — sl|%,t € T\{E}}. (5)

Se simula la muerte de una célula con nucleo en el
sitio s aumentando el peso de las celdas vecinas, con
las que V7 (s) comparte caras, hasta que V;(s) = {s}
y ahi, se puede considerar que dicha célula “ha
muerto"’.

Para analizar cierta estabilidad en estos modelos, se
estudia una propiedad cualitativa utilizando
herramientas del analisis convexo en relacién a la
convergencia de conjuntos. Se muestra que, si el
nucleo converge a un sitio fijo final, esto implica la
convergencia de las células a la célula generada por
el sitio final.

Este analisis se realizard utilizando la nocién de
excedente de un conjunto sobre otro y las
convergencias en sentido de Kuratowski y Hausdorff
(Luchetti, 2006), que se definen a continuacién:
Dados dos conjuntos cerrados no vacios A y B,
definimos el excedente de A sobre B como

e(A4,B) = supd(a,B), considerando e(4,B) = o
a€cA

cuandoB=QvyA # Q.

Definicion 1: (Convergencia de Hausdorff) Una

sucesion {A,} de conjuntos cerrados en R™,

converge en el sentido de Hausdorff al conjunto A4, si
e(A,,A) >0y e(4,A4,) -0,

cuando n — oo. En este caso se utiliza la notacidn:

H
A, = A.

Definicion 2: (Convergencia de Kuratowski) Una
sucesion {A,} de conjuntos cerrados en R™,
converge al conjunto A en el sentido de Kuratowski
si

LsA, € A € LiA,,
donde LiA, es el limite inferior de la sucesion,
definido por:

LiA,:= {x € R™x = lim x; % €Ay, k2 N},
para algin N € N y LsA,, es el limite superior de la
sucesion y esta definido por:

LsAy:= {x € R™x = Ilim X X € Ay, (i} © N}.
—00

En este caso se utiliza la notacion: A4, i A.

Para comparar resultados entre estas convergencias
se utilizard la siguiente proposicion (Ambrosio,
2004):

Proposicién 1: Si A y A,, n €N, son conjuntos
H
cerrados en R™, entonces: A, = A implica que:

A, f>A. El reciproco es verdadero si todos estos
conjuntos son subconjuntos de un mismo conjunto
compacto.

Finalmente, se utilizan implementaciones de
Voronoi en el lenguaje Python para realizar las
simulaciones en R?. En particular se utiliza la
biblioteca Scipy que incluye el calculo de celdas de
Voronoi a partir del sofware Qhull (Barber et. al,
1996).

3. Resultados y Discusion

Movimiento celular

Para simular el movimiento celular, debe
demostrarse -utilizando celdas de Voronoi- que una
celda puede desplazarse a otro sitio a través del
tejido en el que se encuentra. En este caso, {s,}
representa la posicion que va tomando el nucleo de
una célula a medida que se mueve hasta la posicién
final s, y, de manera andloga, VTn(sn) representa la
posicidon que va tomando la célula a medida que se
mueve hasta la posicion final V. (s), como lo muestra
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la siguiente proposicién, en sentido de convergencia
de Kuratowski.

Proposicidn 2: (Convergencia de Kuratowski para el
movimiento celular). Sea {s,} una sucesion de
puntos en R™ y sean T' y T,, los conjuntos de sitios
definidos en (3). Si s, = s, entonces

K
Vr,(sn) = Vr(s).

Demostracion. Observemos que de la ec. (1) se tiene
que Vr(s) = {x e R™:d(x,s) <d(x,T") } yde(3),

VTn(Sn) = {X € R™ d(x: Sn) < d(xr Tn\{sn})} (6)
={x e R"d(x,s,) <d(x, T}

Consideremos los limites inferir y superior:
LiVr, (sp) = {x €R™x = limx, x,€Vr(sy), n= No},
n—oo

paraalgin Ny €N, y

LsVr (sp) = {x ER™:x = ]lim X, X € VTnk(s,,k), {n} c N}

Se demostrara que Vr(s) € LiVr, (s,): Sea a €
Vr(s), para cada n € N, se toma a, € Vr, (s,) tal
que d(a, a,) = d(a, VTn(sn)). Tal a, existe

porque Vr (s,) es cerrado, convexo y no vacio.

Si {ay}neny NO converge a a cuando n — oo,
enconces existe € > 0 y wuna subsucesion
{snk} tal que d (a, VTn(snk)) >¢& Como s, — s,
entonces s, — scuandok — co.Ademas, Be(a) N
Vi (snk) = @, paratodo k € N.

Si se define la multifuncién V: R™ 3 R™ como en
(4), aplicando el Teorema 1 de Goberna et al. 2012,
se tiene que V es semicontinua inferiormente en s,
ya que s es un punto aislado de T. Como B.(a) N
Vr(s) # @, existe un abierto W tal que s€
W yB.(a)nV(v) # @, para todo v E€W. Del
hecho de que s,, — s, existe n € N tal que si k>
N, entonces s, € W. Luego, B.(a) N V(snk) =
B.(a) N VTnk (snk) # @, lo cual es absurdo. Esta
contradiccion implica que a,—a. Asi, a€
LiVr, (sn) Y, por lo tanto, Vr(s) € LiVr, (sy).

Se mostrard ahora que LsVr, (s,) € Vr(s): Seaa €
LsVr, (sp). Entonces, existe una sucesion {a,}, €
N C R"talquea, —» ay ai € VTnk(Snk)’ donde
{n,} es una subsucesién de enteros. Se quiere

probar que a € Vy(s), es decir, que d(a,s) <
d(a,T").

Como {Sp, Jn,en €5 Una subsucesion de {s, }nen, ¥

S, = s, entonces s, — s. Ademds, como a; €

Vr,, (S, ), se tiene que d(ay, sn, ) < d(ax, T'). Asi,

dadoe > 0, existe N € N tal quesik = N entonces:
€ €

d(a,a;) < 3 d(snk, s) <3

Luego,
d(a,s) <d(a,ay)+ d(ak,snk) + d(snk,s)
<e+d(aT",

para todo k>N. Como d(a,T')—d(aT")
cuando k — o, se obtiene que d(a,s) <e+
d(a,T"),paratodo e > 0. Estoimplicaque d(a, s) <
d(a,T").Luego, a€Vy(s)y, por lo tanto,
LsVr, (s,) € Vr(s).

Se ha probado asi que LsVr (s,) € Vr(s) S
LiVr, (sn) Y, por Definicién 2, se tiene que

V. (52) = Vi (s).

Para que las celdas de Voronoi converjan en sentido
Hausdorff, por Definicion 1, debe cumplirse que:

e (Vr() Vi, (s)) = 0, v e (Vr, (), V() = 0,
para todo quen € N.

Esto se cumple bajo el supuesto de que las celdas
estén en un dominio compacto, como se muestra en
la Proposicidn 2. El siguiente ejemplo muestra que,
sin esta hipdtesis, no se puede garantizar la
convergencia de Hausdorff.

Ejemplo 1:Sea T = {a,s, b} c R?, donde:
a=(-2,0),s=(0,0) yb=(2,0) (ver Figura 1).

3

2

S
b
S

-3 =2 -1 0 1 2
X

Figura 1. Diagrama de Voronoide T = {a, s, b}.

Sea {s,}neny © R? una sucesién definida por s, =
(0, %) Sea T, = {a, (0, %),b}. Es claro que s, — s.
La recta que une los puntos b y s,, estd dada por:
Pa(x) = —ix + % y la mediatriz entre el segmento
que une los puntos b y s,, es decir, la cara que
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comparten las celdas Vr (b) y Vg, (s,), estad dada
por: y,,(x) = 2n(x — 1) + %, tal como lo muestra la
Figura 2.

Dado que Vi(s)={(x,y) ER:-1<x<1},
si (n,y) € Vr,(sy), conn € N, entonces:

e (Vr, (su), Ve () = d((6, ), V() = lx = 1] =n — 1

Luego e (VTn(sn),VT(s)) — oo cuandon — c. Por lo
tanto, Vr, (s,) no converge en sentido Hausdorff a
Vr(s), aunque s,, — s (ver Figura 3)

J
2 ,/\
o
14 Sn vt
=~ 0 oa .b
7] 4
‘:u_‘*‘ifv"'i
=21
13 -2 —1 0 i 2

X
Figura 2. Diagrama de Voronoi de T,, = {a, s,, b}. N6tese
que a partir del punto (O,%), cuando x = 0, la cara
comun de las celdas Vr, (s,) y Vg, (b) coincide con la
mediatriz del segmento s,b.

/ b 5 a S0 b

Figura 3. Diagramas de Voronoi de T,,, para Ty,T» y T1o. Puede observarse (de izquierda a derecha) que la celda generada
por el sitio s, (lila claro) no converge a la celda generada por s, aunque s,, = s.

El ejemplo anterior muestra la necesidad de agregar
la hipotesis de que las celdas estén contenidas en un
conjunto compacto E. Si esto no ocurriese, se toma
Ve(s)NE y Vr(s,) NE. Esta hipétesis, no
representa un inconveniente en el modelo de la
dindmica celular, ya que E puede representar una
porcion de tejido.

Proposicion 3: (Convergencia de Hausdorff en el
movimiento celular). Sea E € R™ compacto, de
modo que V7(s) € Ey Vr (s,) € E, paracadan €
N. Sis, — s, entonces Vr, (s,) converge en sentido
de Hausdorff a V;(s).

Demostracion. De la Proposicion 2, se obtiene que
Vr,(sn) converge en sentido de Kuratowski a Vr(s)
y por Proposicién 2, esto implica que Vg, (s,)

converge en sentido de Hausdorff a V;(s), ya que
Vr(s) y Vr, (s,) son conjuntos cerrados dentro de un
compacto, paratodon € N.

Division celular

Para modelar la division celular, en este caso, la
mitosis, se considera que la célula que se reproduce
es la celda consitio s (que representa ahora el primer
elemento de la sucesion {s,}). A partir de alli, la
nueva celda se desplazara hasta finalizar en algun
punto 5§ (ver Figura 4). Por lo tanto, se aplica el
modelo del movimiento al conjunto de sitios T =
T U {5}, donde 5 es el limite de la sucesion {s,}
ys; =s,dandoenestecaso, T, =T, T' = T\{5} =
T yT,=T'U{s,}=TU{s,}.
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0.0
-03
1 -10

-3

=24

0.0 .

-03

. ~10

-2 =l 0 I 2 ) -2 =1

Figura 4. Diagramas de Voronoi de la division celular. Puede observarse (de izquierda a derecha) la division de la celda con
sitio s (rosa) tras la aparicidn de una nueva celda con sitio s,, (amarillo) que converge a la posicion final .

Proposicion 4: (Convergencia de Kuratowski para la
division celular). Sea SER™, T=TU{5}y T, =
T U {s,,} para todon € N. Si {s,,} es una sucesion en
R™ tal que s; =s y s, —§, entonces Vf, (sy)
converge en sentido de Kuratowski a Vz(5).

Demostracion. Se aplica directamente la
Proposicién 2 al conjunto T = T U {5}. Por lo tanto

Vi (sn) = V(3.

2.0 24

Se puede observar en la Figura que si no
tomamos S € intconvT’, el andlisis no tiene
sentido bioldgico, ya que el tamafio de la célula
aumenta demasiado apenas se divide.

IE5: L5
Lo . . 1.4
0.3 0.3
0.0 . 0.0
-0.5 / . 0.5

-0 . -0

Figura 5. Diagramas de Voronoi de la divisidon si § € int conv T'. Puede observarse (de izquierda a derecha) la divisién
de la celda con sitio s (rosa) y la aparicién de una nueva celda con sitio s,, (gris) de gran tamafio que converge a la
posicién final s.

Proposicion 5: (Convergencia de Hausdorff en la
division celular). Sea E € R™ compacto, de modo
que V7(5) € E y V5, (s,) € E, para todo n € N. Si
s, = §, entonces Vr, (s,) converge en sentido de
Hausdorff a V7(3).

Demostracion. Si se considera la sucesion {s,} a
partir de n = 2, y como E es compacto, el analisis
es equivalente al movimiento  celular,
sustituyendo T por T, T’ por Ty T, porT,, =T U
{s,}, por lo que, aplicando la Proposicion 2,

H
V’I_"n(sn) - VT(§)

Muerte celular

Finalmente, en esta Ultima etapa, se considera la
muerte celular como una célula que se une a otra y,
asi, disminuir en uno la cantidad de sitios. Es decir,
hacer s, —» s sin retirar a s del conjunto T,. Sin
embargo, este tipo de razonamiento no garantiza la
convergencia en sentido Hausdorff de las células,
como lo muestra el siguiente ejemplo.

Ejemplo 2: Sean T = {(0,0), (—1,1), (1,1)} vy
T"n =TuU {(0,—%)}, n € N conjuntos de sitios en
el conjunto compacto E = [-2,2] x [-2,2] c R2.

Se considera s =(0,0)y s, = (0,—%), para cada
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n € N. Es claro que s, — s. Ademds (0,1) € V7, (s)
y 1<d(00),V,(5)) < e (Vr(9), Vg, (), para
todo n € N. Por lo tanto, e (VT(S)'VTn(Sn)) »0y

asi VTn(Sn) no converge en sentido Hausdorff a
Vr(s), como se visualiza en la Figura 6, donde el
diagrama realiza un cambio brusco cuando
alcanza el limite.

LS Ls

1.0
0.5~ 0.54
=00 o 001

05|~ -05

-1.0- —-1.0

=157 =1.57 -1.59

200 -is —io 05 00 o5 10 15 20 %0 _i5 —io 05 00 05 10 15 20 %o _i5s -io —05 00 05 10 15 20

x X x

Figura 6. Diagramas de Voronoi en R? de T,,, para Ty, To y en el limite T. Se puede observar (de izquierda a derecha) como
la celda Vg (sp) no converge en sentido Hausdorff a V;(s).

Por este motivo, para modelar la muerte celular, se
utiliza la generalizacién de celdas de Voronoi con
peso a, definidaen (3), paraa € [0,1] yt € T. Con
los mismos argumentos dados por Voigt, 2008 para
obtener la representaciéon dada en jError! No se
encuentra el origen de la referencia. se obtiene que
VF () es el conjunto de puntos x € R™ tale que:

1-—
xT(t— E)T“(ntnz —E®D +as"c-D,te1 (7)

Con esta nueva definicién y, teniendo en cuenta que
por (7), las celdas mantienen sus propiedades de
linealidad y convexidad, se modela la muerte de la
célula con nucleo en el sitio s aumentando el peso a
en las celdas vecinas hasta lograr que V;(s) = {s},
como se observa en la Figura .

. . . . 1
Figura 7. Diagramas de Voronoi con peso @, para T en R? , simulando la muerte celular, para a,, = 1 — —econn =

1 (izquierda),n = 2 (centro) y cuando n — o (derecha).

Proposicién 6: (Convergencia de Kuratowski para
muerte celular). Sean s €intconvT’ y sea
VTa"(s) la celda definidaen (5) cont=svy a, =

1—%, para cada n € N. Entonces, VTa”(s)

converge en sentido de Kuratowski a {s}.

Demostracion. En primer lugar, de (5), se tiene que
VTa" (s) es el conjunto de puntos x € R™ tales que

1
e = sli? < flx = el = (1= =) lls = el
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para todo t € T'. De Definicion 2, los limites
LiV;"™(s) y LsVy™(s) para {Vz™(s)} son:

{x € R™: x = lim x,,,x, €V, "(s),n > N}
n—o0o
paraalgin N €N, y
{x ER™:x = lim x;,x;, € VTank(s), {n,} c N},
n—-oo

Respectivamente. Se demostrard que {s} <
LiVy™(s): Claramente s € V,™(s) para todo n €
N.Sea a, =s para todo n € N. Entonces,
a, converge a s y a, € V'"(s), para todo n € N.
Luego, s € LiV,'"(s), y asi, {s} € LiV™(s).

Se verad ahora que LSVT“"(S) C {s}: Sea a€
LSVTa”(s). Entonces, existe una subsucesion
a
{n,}tal que x, €V, "k(s) y Xp, = a. Como
a
Xn, €V "k (s) entonces, sustituyendo a, por

1 .
(1 - E) en (7), se tiene que

1 1
"¢ =) < 7 (el = sl + (1= —) s (e = )
k

- an
luego,

1
Xn,,(t—8)—sTt+|Is|I* < ﬁ(lltll2 + |IslI?2 = sTt),
k
T 1 2 T 2
(o =)' (¢ =) = 7= Il = 257e + 5112

T 1
(xn, —s) t—9) < m“t — sl

Luego, cuando n, — o, (a —s)"(t —s) <0, para
todot € T'.

Seaw € conv T'. Entonces, existen escalares 3, > 0,
t €T’ tales que Yierfr=1y W= Yier Bet-

Luego,
(a=s)'w-s)=(a— S)T< Bet — S)
=) Bet=9)
teTr
- Zﬁt(a—s)T(t—s) <o.
teTr

Asi, (a —s)T(w —5s) <0, paratodot € convT'.

Por hipdtesis, s € int conv T, luego existe £ > 0 tal
ques+ez€convT'ys—ez €convT’, para cada
z € B;(0,). Sise consideraw = s + €z, entonces

(a=5)T(s+ez—5)=(a—s)"(e2)
=ela—-35)Tz (8)
<0.

Ahora, si se considera w = s — £z, entonces

(a—3s)T(s—ez—5s)
(a—s)"(=¢2) (9)

—g(a—-95)Tz<0.

Por (8) y (9), se tiene que (a — s)Tz = 0, para todo

z € B;(0,). En particular, si z =ﬁ, entonces
a—-s)T-=|la—s||=0,y asi, a=s. Por lo
lla—sll

tanto, LsV, "(s) € {s}.

K
Se ha probado asi, que VTa" (s) = {s}.

Para analizar la convergencia de Hausdorff, al igual

que en los dos casos anteriores, se agrega el

supuesto de que las celdas estén contenidas en un

conjunto compacto E, si esto no ocurriese, se toma
an

V. "(s)NE.

Proposicion 3.2.6 (Convergencia de Hausdorff para
muerte celular) Sea E € R™ compacto, de modo
que Vi*(s) € E, para todo n €N, y se supone s €
int conv T'. Entonces, VT“"(S) converge en sentido
de Hausdorff a {s}.

Demostracion. Si  bien se puede utilizar Ia
Proposiciéon 1 para realizar esta demostracidn, se
hara una demostracion alternativa.

Segun Definicidn 1 se debe demostrar que

e ({s}, v (s)) -0 y  e(V(s),{s}) - 0.

Se mostrard primero que e(VT“"(s), {s}) — 0: Sea
X, € VTa"(s) tal que d(x,,s) = e(VTa"(s),{s}).
Como E es compacto, existe X € E y una subsucesion
{xn,} tal que x, — x €E. Por proposicién 6,
Vm(s) g {s}, entonces x € LsV,™(s) € {s}. Es
decir, X = s. Asi, dado € > 0, existe N € N tal que si
k > N, entonces d(xnk, s) <e&.

Del hecho de que ||x — t]|? — (1 - n%l) [Is — ]| es
menor o igual a |lx —¢||? — (1 - %) [Is —¢|I?, se
obtiene que VT“"“(S) c VTa“(s). Por lo tanto,

e(VTo‘”’r1 (s), {s}) < e(VTa“(s), {S}). Luego, para cada
n tal que n > ny, con k > N, se cumple que

e(Vy™(s).{s}) <e (VT“nk (s),{s}) =d(x,,,s) <«
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Luego, (V™ (s),{s}) - 0.

Se verd ahora que e ({s}, VTa"(s)) — 0: Esto se
deduce de que s € VTa”(s) para todo n € N, lo que

1. Conclusiones

Los resultados presentados permiten interpretar los
fendmenos de movimiento, la division (mitosis) y
muerte celular desde una perspectiva geométrica
basada en la teoria de celdas de Voronoi y las
nociones de convergencia de Kuratowski vy
Hausdorff.

En el caso del movimiento celular, se demostré que,
si el nucleo de una célula se desplaza segun una
sucesion de puntos que converge a una posicion fija
dentro de un dominio compacto, entonces la
correspondiente celda de Voronoi también converge
en sentido de Kuratowski y Hausdorff. Este resultado
no solo valida el uso de diagramas de Voronoi para
simular dindmicas celulares, sino que también
proporciona una base tedrica sdlida para asegurar la
estabilidad del modelo ante desplazamientos
discretos de los nucleos celulares. Este fendmeno -el
desplazamiento de una célula a través de un tejido-
puede observarse, por ejemplo, en la cicatrizacion
del epitelio, donde los fibroblastos migran hacia la
zona lesionada para generar nuevo tejido conectivo.

Para el fendmeno la division celular, se modeld la
mitosis como la adicion de un nuevo sitio al conjunto
de generadores. Al establecer que este nuevo sitio
converge a una posicidn limite dentro del dominio,
se logré demostrar la convergencia en ambos
sentidos  (Kuratowski y  Hausdorff).  Esta
formalizacion se puede utilizar para describir
procesos de proliferacién celular, como |Ia
regeneracion de tejidos o el crecimiento tumoral, en
los que la estructura espacial de las células juega un
rol central.

El andlisis de la muerte celular fue mas desafiante, ya
que la simple eliminacién de un sitio no garantiza
convergencia. Para resolver esto, se introdujo una
nueva definicién de celdas de Voronoi con peso, en
donde se aumenta progresivamente el peso de las
celdas contiguas a la celda que se desea eliminar,
hasta que su dimensidn tiende a cero, simulando asi
una célula cuyo volumen tiende a cero. Este enfoque
no solo permite modelar el proceso de muerte
celular desde una perspectiva geométrica, sino que
también asegura la continuidad del sistema en
términos topoldgicos, algo que no era posible en el
modelo cldsico. Se trata, por lo tanto, de una

implica que e ({s}, VT“"(S)) = 0, para todon € N.

H
Por lo tanto, V™ (s) = {s}.

propuesta original que puede ser util en contextos
en los que es necesario simular muertes celulares
programadas, como la apoptosis o ciertos procesos
de remodelacidn tisular.

En conjunto, estos resultados muestran que las
nociones de convergencia de conjuntos aplicadas a
celdas de Voronoi permiten formalizar y simular
dindmicas celulares complejas con precision
matematica. Las propiedades de linealidad,
convexidad y continuidad de las celdas juegan un
papel central en esta construccion, y su preservaciéon
bajo ciertos supuestos garantiza la validez del
modelo.

Como linea futura, se propone ampliar el marco
tedrico a espacios tridimensionales y explorar
condiciones mds generales de convergencia, asi
como integrar este enfoque en sistemas
computacionales que permitan validar los modelos
con datos empiricos o experimentales.

2. Agradecimientos

Los autores agradecen a la Universidad Nacional de
Cuyo (sup 06/80020240100387UN, Slp
06/80020240400087UN) y al Consejo Nacional de
Investigaciones Cientificas y Técnicas (CONICET) por
el apoyo financiero que hizo posible la realizacién de
este trabajo.

3. Referencias

Ambrosio, L.; Tilli, P. (2004). Topics on analysis in
metric spaces. Oxford University Press,
USA.

Aurenhammer, F.; Edelsbrunner, H. (1984). An
optimal algorithm for constructing the
weighted Voronoi diagram in the
plane. Pattern recognition, 17(2), 251-
257.

Barber, C. B.; Dobkin, D. P.; Huhdanpaa, H. (1996).
The quickhull algorithm for convex
hulls. ACM Transactions on
Mathematical Software, 22(4), 469-
483.

Bock, M.; Tyagi, A.K.; Kreft, JU.; Alt, W. (2010).
Generalized Voronoi Tessellation as a

REVISTA INGENIERIA Y CIENCIAS APLICADAS | CC BY-NC-SA 4.0 | ISSN 2796-9444

103


https://revistas.uncu.edu.ar/ojs3/index.php/revicap

ﬂ?e\lCAp

Revista Ingenieria y Ciencias Aplicadas
ISSN 2796-9444 / Num. 2. Vol. 5 - 2025
https://revistas.uncu.edu.ar/ojs3/index.php/revicap

Model of Two-dimensional Cell Tissue
Dynamics. Bull. Math. Biol. 72, 1696—
1731.

Brillouin, L. (1930). Les électrons dans les métaux et
le classement des ondes de de Broglie
correspondantes. C. R. Hebd. Séances
Acad. Sci. 191, 292.

Delaunay, B. (1934). Sur la sphere vide. A la mémoire
de Georges Voronoi. Bulletin de
I’Académie des Sciences de I'URSS., 6,
793-800.

Descartes, R. (1656). Renati Des-Cartes Principia
philosophiae. Amstelodami, apud
Johannem Jansonium Juniorem.

Dirichlet, G.L. (1850). Uber die Reduction der
positiven quadratischen Formen mit
drei unbestimmten ganzen Zahlen.
Journal fir die reine und angewandte
Mathematik 40, 209-227.

Fan, C., Raichel, B. (2025). Linear Expected
Complexity for Directional and
Multiplicative ~ Voronoi  Diagrams.
Discrete Comput Geom 73, 1-24

Goberna, M.; Rodriguez, M.; Vera de Serio, V. (2012).
Voronoi cells of arbitrary sets via linear
inequality systems. Linear Algebra
Appl, 436, 2169-2186.

Lucchetti, R. (2006). Convexity and Well-Posed
Problems. Springer New York.

Nguyen, N. A.; Olaru, S.; Rodriguez-Ayerbe, P. (2015).
Recognition of additively weighted
Voronoi diagrams and weighted
Delaunay decompositions. European
Control Conference (ECC), 328-333.

Preparata, F. P.; Shamos, M. |. (1985). Computational
geometry: an introduction. NewYork.

Ridolfi, A. B., Vera de Serio, V. N. (2023). A Radius of
Robust Feasibility for Uncertain
Farthest Voronoi Cells. Set-Valued and
Variational Analysis, 31(1), 11.

Thiessen, A.H., (1911). Precipitation averages for
large areas. Mont. Weather Rev. 39,
1082-1084.

Voronoi, G. (1908). Nouvelles applications des
parametres continus a la théorie des

formes  quadratiques.  Deuxiéme
mémoire.  Recherches  sur les
parallélloedres primitifs. Journal fiir
die reine und angewandte
Mathematik 134, 198-287.

Voigt, I. K. (2008). Voronoizellen diskreter
Punktmengen, Ph.D. thesis, TU
Dortmund  University, Faculty of
Mathematics, Dortmund.

Wigner, E.; Seitz, F. (1933). On the constitution of
metallic sodium. Phys. Rev. 43, 804-
810.

Zou, S., Gong, H., Gao, J. Zhou, L. (2024). Simulation
of cells mechanical responses during
perfusion culture in Voronoi-lattice
scaffolds using multiphase FSI model.
Acta Mech. Sin. 40, 624031.

4. Anexos

Celdas sin peso: A continuacidn, se presenta el
codigo en Python utilizado para generar celdas de
Voronoi sin peso, a partir de un conjunto de sitios
definidos manualmente. El cédigo permite graficar
las regiones resultantes y exportar la imagen
generada en alta resolucion.

import numpy as np

from matplotlib import pyplot as plt

from scipy.spatial import distance

import matplotlib

matplotlib.rcParams[ 'mathtext.fontset'] =
"stix'

matplotlib.rcParams['font.family'] =
'STIXGeneral'

sitios = np.array([[©.3,0],[-1,1],[1,1],[-
2,‘9])[@:'1];[2-5:'9'1])

[2,-1.5], [-1.5,-1.75]])
#se colocan las coordenadas de los sitios

X = np.linspace(-2.5,2.5,1000)

y = np.linspace(-2,2,1000)

X,y = np.meshgrid(x,y)

points = np.stack((x.ravel(), y.ravel()),
axis=1)

distances = distance.cdist(points, sitios)

celdas =
np.argmin(distances,axis=1).reshape(x.shap

e)

plt.figure(figsize=(10,7))
plt.contour(celdas, extent=(-2.5, 2.6, -2,
2),linewidths=1, colors='k")
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plt.contourf(celdas, extent=(-2.5,2.6,-
2,2),cmap="Pastell")

plt.scatter(sitios[:, @], sitios[:,
1],marker="0"', s=40,color="k")

plt.xticks(size=24)
plt.yticks(size=24)

plt.text(0.3,0.1,'$ V_{T}(s)$', fontsize =
28)

plt.tight_layout()
plt.savefig('Imagenl-4.jpg',dpi=300)

Celdas con peso

El siguiente script permite generar celdas de Voronoi
con peso, simulando la desaparicidon progresiva de
una célula. Este modelo fue adaptado a partir de un
repositorio en linea y modificado para ajustarse al
enfoque propuesto en este trabajo:
https://gist.github.com/sunayana/a3a564058e9775
2f726ca65d56fab529.

import itertools

import numpy

from scipy.spatial import ConvexHull
from scipy.spatial import distance
from matplotlib.collections import
LineCollection

from matplotlib import pyplot as plot
import matplotlib
matplotlib.rcParams[ 'mathtext.fontset'] =
"stix'
matplotlib.rcParams['font.family'] =
'STIXGeneral'

def disc_uniform_pick(N):
angle = (2 * numpy.pi) *
numpy . random. random(N)
out = numpy.stack([numpy.cos(angle),
numpy.sin(angle)], axis = 1)
out *=
numpy . sqrt (numpy.random.random(N))[:,None]
return out

def norm2(X):
return numpy.sqrt(numpy.sum(X ** 2))

def normalized(X):
return X / norm2(X)

def get_triangle normal(A, B, C):

return normalized(numpy.cross(A,B)
+ numpy.cross(B, C) +
numpy.cross(C, A))

def get_power_circumcenter(A, B, C):

N = get_triangle_normal(A, B, C)
return (-.5 / N[2]) * N[:2]

def is_ccw_triangle(A, B, C):
M = numpy.concatenate([numpy.stack([A,
B, C]), numpy.ones((3, 1))], axis = 1)
return numpy.linalg.det(M) > ©

def get_power_triangulation(S, R):
S_norm = numpy.sum(S ** 2, axis = 1) -
R ** 2
S_lifted = numpy.concatenate([S,
S_norm[:,None]], axis = 1)
if S.shape[0] == 3:
if is_ccw_triangle(S[@], S[1],
S[2]):
return [[0, 1, 2]],
numpy.array([get_power_circumcenter(*S_lif
ted)])
else:
return [[0, 2, 1]],
numpy.array([get_power_circumcenter(*S_1if
ted)])

hull = ConvexHull(S_lifted)

tri_list = tuple([a, b, c] if
is_ccw_triangle(S[a], S[b], S[c])
else [a, c, b] for
(a, b, ¢), eq in zip(hull.simplices,
hull.equations) if eq[2] <= 9)

V =
numpy.array([get_power_circumcenter(*
S_lifted[tri]) for tri in

tri_list])

return tri_list, V

def get_voronoi_cells(S, V, tri_list):
vertices_set =
frozenset(itertools.chain(*tri_list

))
edge map = { }
for i, tri in
enumerate(tri_list):
for edge in
itertools.combinations(tri, 2):
edge = tuple(sorted(edge))
if edge in edge_map:
edge_map[edge].append(i)
else:
edge_map[edge] = [i]
voronoi_cell map = { i : [] for
i in vertices_set }
for i, (a, b, c¢) in
enumerate(tri_list):
for u, v, w in ((a, b, c),
(b, ¢, a), (c, a, b)):
edge = tuple(sorted((u,
v)))
if len(edge_map[edge]) ==
2:
j, k = edge_map[edge]
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if k == i:

j; k =k, j

U = V[k] -

V[l

U_norm =

norm2(U)
voronoi_cell map[u].append(((j, k),
(V[jl, U / U_norm, @, U_norm)))

else:
A, B, C, D =S[u], S[v], S[w], V[i]
U = normalized(B - A)
I = A + numpy.dot(D - A, U) * U
W = normalized(I - D)
if numpy.dot(W, I - C) < @:

W= -W
voronoi_cell map[u].append(((edge_m
ap[edge][@], _1): (D) W, o,
None)))
voronoi_cell map[v].append(((-1,
edge_map[edge][0]), (D, -W, None,
2)))

def order_segment_list(segment_list):
first = min((seg[0@][0], i) for i, seg
in enumerate(segment_list))[1]
segment_list[0],
segment_list[first] =
segment_list[first],
segment_list[0]
for i in range(len(segment_list) - 1):
for j in range(i + 1,
len(segment_list)):
if segment_list[i][@][1] ==
segment_list[j][0@][@]:
segment_list[i+1],
segment_list[j] =
segment_list[]j],
segment_list[i+1]
break
return segment_list
return {i :
order_segment_list(segment_list) for i,
segment_list in
voronoi_cell map.items() }

def display(S, R, tri_list,
voronoi_cell map):
fig, ax = plot.subplots()
plot.axis('equal')
plot.x1lim(-4,4)
plot.xticks(size=12)
plot.yticks(size=12)
for Si, Ri in zip(S, R):
ax.add_artist(

plot.Circle(Si, Ri, fill = True,
alpha = .4, 1w = 0.,
color = '#8080f0', zorder = 1))
plot.scatter(S[:, @], S[:,
1],marker="0"', s=30,color="k")
plot.text(0,0.1, '$s$', fontsize =
12)
edge map = { }
for segment_list in
voronoi_cell map.values():
for edge, (A, U, tmin, tmax) in
segment_list:
edge = tuple(sorted(edge))
if edge not in edge_map:
if tmax is None:

tmax = 10
if tmin is None:
tmin = -10

edge_map[edge] = (A + tmin
* U, A+ tmax * U)

line_list =
LineCollection(edge_map.values(), 1w = 1.,
colors = 'k'")

line_list.set_zorder(9)
ax.add_collection(line_list)

plot.savefig('Muerte_pesos_cuadrado
s_5.jpg',dpi=300)
plot.show()

def main():
sample_count = 7
S = numpy.array([[e,0],
['1)1])[1:1]:['2;0];
['1)'2]:[2'5:'601]:
[2,-1.5]1)
s = numpy.array([S[e]])
alpha = 0.999
weight = alpha *
(distance.cdist(S,s))
R = weight.flatten()
print(R)

tri_list, V =
get_power_triangulation(S, R)

voronoi_cell map =
get_voronoi_cells(S, V, tri_list)

display(S, R, tri_list,
voronoi_cell map)

if __name__ == '__main__': main()
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