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Los dispositivos de hardware reconfigurable han revolucionado la forma en que se diseñan 
sistemas electrónicos a la medida y han permitido lograr soluciones que aprovechan al máximo 
recursos limitados como la batería o el espacio. Sin embargo, lograr la experticia en estos 
dispositivos es un reto tanto para la industria como para la academia. Si bien actualmente existen 
herramientas que proveen la posibilidad de diseños en alto nivel, la eficiencia lograda en la 
solución final con este método no es la más conveniente, de allí que sea aún necesario trabajar 
en buena medida con diseños en bajo nivel, particularmente con lenguajes de descripción de 
hardware, los cuales han mostrado ser particularmente difíciles de aprender para muchos 
estudiantes en ingeniería electrónica. En este artículo se presentan los resultados de una 
investigación cuyo objetivo fue la creación de una herramienta de croscompilación que permite 
a los alumnos describir sus sistemas hardware en el lenguaje de alto nivel Python. La herramienta 
genera una versión VHDL apropiada para sintetizar un procesador a la medida con uso óptimo 
de recursos. Los resultados indican mejoras en la tasa de aprendizaje en términos de interés, 
motivación y asimilación, siguiendo el modelo de estilos de aprendizaje de Kolb. 
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Reconfigurable hardware devices have revolutionized the way custom electronic systems are 
designed, enabling solutions that maximize the use of limited resources, such as the battery life 
of portable devices or the space available in functional blocks that must operate in a macro 
system with significant area constraints. However, achieving expertise in the management of 
these devices is a challenge for both industry and academia. While tools currently exist that 
provide high-level design capabilities, the efficiency achieved in the final solution with this 
method is not optimal. Therefore, it is still necessary to work largely with low-level designs, 
particularly with hardware description languages, which have proven particularly difficult to 
learn for many electronic engineering students. This paper presents the results of a research 
project aimed at creating a cross-compilation tool that allows students to describe their 
hardware systems in a high-level language such as Python. The tool generates a VHDL version 
suitable for synthesizing a custom processor with optimal resource utilization. The results 
indicate an improvement in the learning rate given in terms of interest, motivation and 
assimilation, following Kolb's learning styles model. 

1. Introducción 

La electrónica constituye uno de los pilares de la 
sociedad actual. Gracias a ella, ha sido posible 
automatizar un sinfín de procesos y lograr potencias 
de cómputo cada vez mayores con dispositivos que 
son consistentemente más pequeños y más rápidos. 

En el caso particular de la electrónica digital, el 
dispositivo estrella fue, y todavía lo es en gran 
medida, el microprocesador. Gracias a él, los 
ingenieros han podido crear sistemas cuyo poder de 
cómputo supera con creces a los grandes y 
monumentales equipos de cómputo que hace tan 
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solo unas pocas décadas ocupaban salas enteras y 
costaban millones de dólares (O’Regan, 2021). 

Sin embargo, las prestaciones de los 
microprocesadores actuales, y por ende su costo, 
exceden por mucho las necesarias para gran 
cantidad de soluciones en donde, si bien se requiere 
cierto poder de cómputo, éste es sólo una fracción 
del disponible en un microprocesador convencional. 
Para cubrir ese segmento se han propuesto 
diferentes alternativas, tales como los 
microcontroladores o el hardware a la medida. No 
obstante, y dado que el cambio generacional entre 
una solución y la siguiente versión se mide 
actualmente en meses o incluso en semanas, cuando 
antes era en años, surgió hace algunas décadas un 
fuerte competidor en este segmento: los dispositivos 
de hardware reconfigurable (Blokdyk, 2018). El 
hardware reconfigurable constituye en principio el 
sueño hecho realidad de todo diseñador de sistemas 
digitales. En un dispositivo se tiene un arreglo de 
compuertas lógicas que inicialmente tienen una 
capacidad omnipotente de conectarse unas con 
otras en cualquier configuración arbitraria, de allí 
que también se conozca como FPGA por la sigla en 
inglés de arreglo de compuertas programable en 
campo, una de las estructuras reconfigurables más 
populares en este tipo de dispositivos (ver Figura 1). 

Una FPGA está constituida por un conjunto de CLBs 
o bloques lógicos configurables, que son pequeños 
arreglos de circuitos digitales típicos, tales como un 
grupo de compuertas AND, OR y XOR, junto con 
algunos dispositivos de memoria como latches y flip-
flops. Entre los CLB discurren, a manera de 
autopistas, líneas de conexión que pueden 
seleccionarse a voluntad para que conecten un CLB 
en particular con otro. Si bien este nivel de detalle es 
apropiado para el diseñador mismo de los FPGA, el 
ingeniero digital usa el dispositivo como una caja 
negra e interactúa con ella a través de una 
herramienta de configuración de alto nivel 
(Nicolescu y Mosterman, 2018). 

De esta manera, el diseñador puede ensayar 
diferentes configuraciones circuitales para que 
cuando eventualmente logre una que satisfaga los 
requerimientos de diseño, decidir si procede a 
fabricarlo en una pastilla de silicio dedicada o, en el 
caso de que sólo se requieran algunas unidades, 
dejar que el propio diseño logrado en la FPGA sea a 
la vez el dispositivo de trabajo. Si bien la cantidad de 
reconfiguraciones que se puede hacer en la práctica 
no es infinita, sí son suficientes para que un 
diseñador avezado logre obtener resultados en un 
tiempo prudencial. Lograr la experticia en el diseño 
digital usando FPGA requiere el dominio de un 

conjunto variado de técnicas y herramientas y una 
en particular se muestra particularmente retadora 
para los estudiantes de ingeniería que entran al 
mundo del diseño de sistemas digitales. Es en este 
punto en donde la necesidad del presente proyecto 
entra en escena. El proyecto, denominado Py2HDL 
ofrece a los alumnos una herramienta tecnológica 
que permite abordar el aprendizaje del diseño de 
sistemas en hardware reconfigurable de una forma 
más afín a los postulados de las ciencias pedagógicas 
en cuanto a la forma en que el aprendizaje deviene 
en el ser humano. Py2HDL permite a los alumnos 
adquirir incrementalmente las destrezas necesarias 
para comprender y dominar el lenguaje VHDL 
partiendo de un lenguaje más accesible como es 
Python, junto con un conjunto de dinámicas basadas 
en el modelo de aprendizaje de Kolb. 

 

Figura 1. Estructura interna de un dispositivo de 
hardware reconfigurable. 

2. Materiales y métodos 

Entorno de desarrollo para FPGA 

La complejidad de las FPGA actuales es tal que 
literalmente están constituidas por cientos de miles 
de compuertas lógicas, por lo que abordar un diseño 
a ese nivel es impensable. Es por ello que los 
fabricantes de las mismas ofrecen herramientas de 
cómputo muy elaboradas que se encargan de 
manejar el dispositivo a nivel de compuerta, al 
tiempo que ofrecen al diseñador una interfaz que le 
permite interactuar con el dispositivo a nivel de 
sistema (ver Figura 2). 

Por otra parte, al igual que un microprocesador es 
útil en la medida en que se conectan periféricos a él, 
por ejemplo teclados, pantallas, interfaces de 
comunicación, etc., de la misma manera, en la 
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práctica, el diseño con dispositivos FPGA se hace 
empleando tarjetas de desarrollo, elaboradas ya sea 
por los mismos fabricantes o por terceros. Estos 
módulos de desarrollo contienen periféricos para 
que la comunicación con la FPGA sea más cómoda. 

Periféricos típicos son por ejemplo un conjunto de 
interruptores y pulsadores a manera de entrada, 
arreglos de LEDs o pantallas LCD a manera de salida 
y diversas interfaces de comunicación como 
ethernet, USB o bluetooth (ver Figura 3). 

 

Figura 2. Interfaz típica de un entorno de desarrollo para hardware reconfigurable 

Figura 3. Tarjeta de desarrollo típica para interactuar con 
un dispositivo de hardware reconfigurable. 

Lenguajes de descripción de hardware 

Así como una FPGA es compleja en su estructura 
circuital, es tanto o más compleja cuando está en 
operación como un sistema lógico secuencial. Basta 
sólo con pensar en la interacción simultánea de sus 
miles de celdas lógicas para darse una idea de la 
magnitud comportamental que puede obtenerse. 
Dado el paralelismo extremo que aparece, emplear 
simples métodos de diseño como tablas de verdad o 
máquinas de estado es sólo posible para diseños 
muy simples. Para diseños medianos a grandes, se 
hace indispensable un nivel de abstracción mucho 
mayor. Es por ello que los fabricantes y los 

diseñadores digitales acogieron en un momento 
dado una opción que en principio se usó para la 
documentación de dispositivos tipo VLSI, pero que se 
ha popularizado y ha encontrado su nicho en el 
mundo del hardware reconfigurable: los lenguajes 
de descripción de hardware o HDL (Pedroni, 2016). 

Un lenguaje de programación convencional describe 
las operaciones que realiza un microprocesador ya 
sea real o virtual de forma secuencial. Lenguajes 
típicos son C, C++, Java o Python. Por su parte, un 
HDL es un lenguaje que describe la forma en que un 
circuito digital está estructurado. Si bien su 
apariencia, en términos de sintaxis, puede llegar a 
hacerlo similar a un lenguaje de programación, su 
propósito y uso son bastante diferentes. Estas 
diferencias suelen ser pasadas por alto por los 
estudiantes que recién inician a usar el lenguaje e 
incluso por diseñadores con más experiencia. Esto se 
debe en gran medida al hecho de que nuestro 
cerebro, al menos en su parte consciente, 
comprende mucho más fácilmente los procesos que 
son secuenciales. Aquéllos que son concurrentes, 
por su propia definición, requieren ser analizados 
como si se tomara una foto o instantánea de un 
momento particular (Jasinski, 2016). 

A pesar de que se han propuesto diversos lenguajes 
de descripción de hardware, hay dos que sobresalen 
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y son por mucho los más populares en el mundo del 
diseño digital: VHDL y Verilog. En el caso de 
Latinoamérica, la preferencia es por el primero de 
ellos y ese es el lenguaje que se empleó en el 
presente proyecto. Se procede ahora a analizar 
brevemente el HDL en sí. Para una introducción más 
detallada a los conceptos fundamentales del 
lenguaje, consultar (Parra-Plaza, 2020). VHDL es un 
lenguaje que se basa en la definición de bloques 
lógicos estructurales. Cada bloque está compuesto 
ya sea por descripciones explícitas de operaciones 
lógicas combinacionales o por descripciones en alto 
nivel de comportamientos secuenciales. El lenguaje 
es altamente jerárquico y permite anidar estructuras 
a cualquier nivel de profundidad que se desee. Las 
únicas operaciones nativas son las operaciones 
lógicas booleanas tradicionales. Los demás 
constructos se realizan por operaciones de decisión, 
mediante el clásico if, y por operaciones de iteración, 
al hacer uso explícito de la retroalimentación de 
variables, que en el caso de VHDL se designan más 
apropiadamente como señales, para indicar su 
naturaleza física. Esta mezcla, que en principio es 
muy conveniente para el diseñador experimentado, 
constituye, según los análisis que el autor ha 
realizado, una de las fuentes de mayor confusión en 
el momento en que el aprendiz intenta comprender 
apropiadamente el funcionamiento de un sistema 
descrito en VHDL (Parra-Plaza, 2015). Considere por 
caso el fragmento de código presentado en la  
Figura 4. 

 
Figura 4. Fragmento de código en VHDL ilustrando los 

problemas de concurrencia. 

En principio se observa que en términos de sintaxis 
este código es parecido a cualquier otro lenguaje 
convencional de programación. Si se analiza de esa 
forma, es decir como si la ejecución fuese secuencial, 
línea por línea, se tiene que pasaría por el primer if, 
a partir del cual la variable a toma algún valor y, 
cuando se ingresa al segundo if, ese valor de a se 
usaría para asignar un valor subsecuente a la variable 
res. Sin embargo, este no es el caso en el lenguaje 

VHDL. Dado que él no describe instrucciones a ser 
ejecutadas, sino que describe hardware, se debe 
analizar como si ambos if se están ejecutando en 
paralelo. De esta manera, las variables a y res, en 
tanto que señales, dada su naturaleza física, están 
cambiando simultáneamente. Esta forma de 
comprender el funcionamiento de un código en 
VHDL es bastante retadora y el diseñador debe hacer 
un ejercicio constante de recordar esta 
característica, en tanto la asimile y la haga parte de 
su experticia (Parra-Plaza, 2012).  

Croscompilación software 

El primer paso en el proceso de diseño de un sistema 
digital es lograr una descripción apropiada del 
mismo que satisfaga los diferentes requerimientos 
funcionales, comportamentales y físicos (Parra-
Plaza, 2016). En el caso del presente proyecto, esta 
actividad culmina cuando se tiene un código Python 
que describe esa funcionalidad. Se eligió Python 
como lenguaje de descripción de alto nivel porque 
satisface la mayoría de características que el autor y 
su equipo definieron para tal propósito (Parra-Plaza, 
2023), teniendo en la cuenta además que el presente 
proyecto articula con otros proyectos en un 
macroproyecto destinado a promover el aprendizaje 
significativo mediante herramientas tecnológicas, en 
el cual Python se emplea transversalmente (Parra-
Plaza, 2018). Es claro que los fabricantes de FPGA son 
conscientes de la necesidad de disponer de lenguajes 
y herramientas de descripción de alto nivel, pero las 
que se ofrecen actualmente, tales como SystemC 
(Black et al., 2009) o Amaranth (Amaranth Project, 
2023), están aún muy ligadas al hardware y 
requieren que el diseñador describa explícitamente 
estructuras como el reloj del sistema o el número de 
bits de cada variable. Esas características son 
indeseables a la luz de la filosofía que guía este 
proyecto y eso reafirma la decisión de emplear 
Python en su forma nativa, sin requerir ningún tipo 
de modificación ni en su sintaxis ni en su 
procesamiento (Parra-Plaza, 2019). 

En informática se habla de dos conceptos base con 
respecto a los lenguajes de programación: lenguajes 
de alto nivel y lenguajes de bajo nivel o de máquina. 
Los primeros se emplean por los diseñadores 
humanos para concebir un código, llamado fuente, 
que representa la funcionalidad del sistema a 
diseñar, los segundos los usa el hardware en sí 
mismo para ejecutar el código de máquina y ejecutar 
las instrucciones que implementan el diseño 
especificado. La labor de traducir un código fuente a 
un código máquina se denomina compilación. En el 
presente proyecto se emplea un concepto distinto, 
pero relacionado con el mismo, la croscompilación, 
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la cual consiste en tomar un código fuente en un 
lenguaje de alto nivel y traducirlo a otro código 
fuente en otro lenguaje de alto nivel (Kleitz, 2011). 
Para el caso presente, el código fuente es Python y el 
código destino es VHDL. Considérese como ejemplo 
un diseño simple, el de un comparador, que realiza 
la comparación entre dos valores y genera por salida 
el mayor de ellos. El código fuente de Python se 
muestra en la Figura 5. Se basa en una función que 
toma dos parámetros, a y b, y determina mediante 
una comparación directa si se debe devolver el valor 
del primero o del segundo parámetro. Para mostrar 
el uso de variables locales, una de ellas se emplea 
para almacenar el valor a devolver. Igualmente, por 
fuera de la función, es permitido generar código que 
invoque a la función, capture su respuesta y la exhiba 
en pantalla. Este código externo a las funciones se 
usará más adelante por parte de la herramienta para 
procesos de validación y verificación funcional y 
comportamental. 

 
Figura 5. Código fuente del comparador. 

Tras la compilación cruzada, la herramienta, que en 
adelante se identificará como Py2HDL, genera el 
archivo comp.vhd, el cual contiene el código VHDL 
para la función Python comp. Este archivo se 
compone de varios bloques de descripción, así que 
se analizará parte por parte. En primer lugar se tiene 
la entidad, la cual describe la interfaz del sistema 
digital con su entorno, indicando, además de su 
nombre, sus señales de entrada y de salida (ver 
Figura 6). Obsérvese la presencia del genérico N el 
cual define la cantidad de bits que tendrán las 
distintas señales. Este valor es generado 
automáticamente por el croscompilador teniendo en 
la cuenta la capacidad en periféricos de la tarjeta de 
desarrollo destino. Cada tarjeta posee cierto número 
de interruptores, los cuales se suelen emplear para 
ingresar datos hacia la FPGA. Py2HDL reconoce esta 
información y la usa para calcular cuántos bits puede 
asignar a cada señal, de tal manera que cada señal 
quede representada y que se maximice la cantidad 
de bits a usar. Igualmente, se tiene la presencia de 
otras señales distintas a las señales originales de 
datos a y b. Estas señales (start, clock, reset, ready, 
result), conocidas como señales de control, son 
necesarias para el correcto funcionamiento del 

hardware y para sincronizar sus procesos en los 
tiempos adecuados. Como se indicó anteriormente, 
los lenguajes de alto nivel usados por los fabricantes 
exigen al diseñador manejar directamente estas 
señales. Py2HDL intencionalmente oculta estos 
detalles específicos de hardware al estudiante en sus 
primeros encuentros con las FPGA.  Posteriormente 
estarán disponibles para que él los asuma, en la 
medida en que sea procedente, siguiendo los estilos 
de aprendizaje de Kolb (Kolb y Kolb, 2017). 

La funcionalidad VHDL asociada a la función Python 
comp se describe en la arquitectura, cuyo 
encabezado, indicando los estados que tendrá el 
sistema secuencial, se muestra en la Figura 7. El 
nombre de los estados se genera basándose en el 
tipo de sentencias y en los números de línea 
presentes en el archivo fuente para facilitar la 
asignación entre ellos con fines de depuración o 
mejora. Por ejemplo, la asignación "temp = b", que 
ocurre en la línea 4 del código Python, se relaciona 
con el estado "assign4", la condición "if a>b", que 
ocurre en la línea 5, se realiza en el estado "if5", y así 
sucesivamente. Las variables locales se asignan a 
señales con el número adecuado de bits según la 
definición de los parámetros. 

 
Figura 6. Código VHDL de destino generado por Py2HDL 

para el comparador (entidad). 
 

 
Figura 7. Código VHDL de destino generado por Py2HDL 

para el comparador (señales). 

La implementación de la funcionalidad se realiza 
mediante un procesador hecho a la medida o 
custom, el cual está diseñado como una ruta de 
datos o datapath junto con una máquina de estados 
de tipo Moore que hará las veces de controlador. La 
ruta de datos se encarga de rastrear las asignaciones 
en el momento oportuno, teniendo en la cuenta los 
cambios en las variables del archivo fuente (véase la 
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Figura 8). La máquina de estados es sincrónica. 
Utiliza un reloj maestro y un reinicio síncrono para 
gestionar los cambios de estado. Py2HDL inserta 
automáticamente un estado inactivo inicial, llamado 
idle, en el que la máquina permanece hasta que sea 
activada por la señal de inicio (véase la Figura 9). 

 

 
Figura 8. Código VHDL de destino generado por Py2HDL 

para el comparador (ruta de datos). 

 

 
Figura 9. Código VHDL de destino generado por Py2HDL 

para el comparador (registro de estado). 

 

La evolución de la máquina de estados depende del 
cálculo del siguiente estado (véase la Figura 10). Para 
ello se tienen en la cuenta en la lista de sensibilidad 
todas las señales capaces de generar eventos. Se 
puede insertar un estado de finalización adicional si 
el diseñador desea que la máquina permanezca en 
este estado, para efectos de probar el 
comportamiento del hardware. El enfoque estándar 
es dejar que la máquina vuelva al estado inactivo 
para que esté disponible inmediatamente para un 
nuevo cálculo. 

Cuando el valor a devolver es estable, el módulo 
informa a su entorno dicho evento para que otros 
módulos actúen de conformidad. Esto se hace 
activando una señal de bandera, "ready", creada 
automáticamente por Py2HDL (ver Figura 11). 

 

 

Figura 10. Código VHDL de destino generado por Py2HDL 
para el comparador (lógica del estado siguiente). 

 

Figura 11. Código VHDL de destino generado por Py2HDL 
para el comparador (lógica de salida). 

Simulación comportamental 

Previo a implementar el diseño en hardware, 
conviene realizar una simulación del mismo. A 
diferencia de una solución software, en donde una 
simulación funcional en suficiente, una solución 
hardware requiere una simulación comportamental, 
en la cual se evalúe que el diseño no sólo realice la 
función asignada, sino también que la haga en los 
tiempos tanto absolutos como relativos necesarios. 
Un simulador muy apreciado para VHDL es 
ModelSim, el cual, aunque pasa por algunos cambios 
al haber sido adquirido por una nueva empresa, 
continúa siendo un referente en el mundo VHDL. El 
simulador requiere disponer de dos archivos: El 
primer archivo es el archivo de descripción y el 
segundo es un banco de pruebas o testbench que 
instruye al simulador con respecto a los valores que 
debe asignar a cada señal de entrada y a los tiempos 
en que debe hacerlo. Para una comprensión más 
detallada del proceso de simulación ver (Parra-Plaza, 
2021). 
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Py2HDL genera un archivo TB que contiene el banco 
de pruebas para un diseño dado. El contenido de 
este archivo se genera a partir de las instrucciones 
Python que detecte por fuera de funciones, en 
particular llamados a las funciones e instrucciones 
print. El archivo compTB.vhd incluye las pruebas de 
alto nivel realizadas en la función comp. Crea señales 
para todos los puertos en comp.vhd, junto con 

constantes y señales que simulan valores y variables 
para las pruebas de alto nivel. Por ejemplo, probar x 
= comp(5, 4) requiere la creación de la señal x y de 
las constantes 5 y 4. Py2HDL ordena las constantes 
incrementalmente para facilitar su inspección. 
También añade valores para el periodo de la señal de 
reloj y asigna todas las señales a una instancia de la 
función (ver Figura 12). 

 

Figura 12. Código VHDL de banco de pruebas generado por Py2HDL para el comparador (señales y componente). 

Py2HDL genera una señal de reloj similar a la del 
hardware real y activa la señal de reset durante el 
primer periodo de reloj para un inicio predictivo 
limpio (ver Figura 13). Las pruebas siguen una 
secuencia de asignaciones que se asimilan a las 
pruebas de alto nivel: se dan valores a los 
argumentos, se genera la señal de inicio y se permite 
que se estabilice, se pasa el control al módulo y se 
programa el evento de retorno detectando el valor 
de la señal listo, el resultado se asigna a la señal de 
prueba y se deja estable durante varios ciclos de reloj 
para que esté dispone a otros módulos (ver Figura 
14). 

 

Figura 13. Código VHDL de banco de pruebas generado 
por Py2HDL para el comparador (reloj y reset). 

 

 

Figura 14. Resultado de la simulación para el comprador. 

Síntesis hardware 

Disponer sólo del archivo vhd que describa la 
funcionalidad del diseño no es suficiente para su 
implementación final. Para ello, la herramienta de 
desarrollo debe realizar un proceso denominado 
síntesis, el cual consiste en asignar recursos o 
bloques lógicos de la FPGA a cada constructo que 
logre identificar en la descripción dada en VHDL 
(Rushton, 2011). Para poder hacer eso es 
indispensable que la herramienta conozca cuál es la 
tarjeta de desarrollo sobre la cual se hará la 
implementación, de tal manera que pueda asociar 
los diferentes periféricos de entrada y de salida con 
las señales internas correspondientes. Para una 
comprensión más detallada del proceso de síntesis 
ver (Parra-Plaza, 2022). 

https://revistas.uncu.edu.ar/ojs3/index.php/revicap


 

Revista Ingeniería y Ciencias Aplicadas 
ISSN 2796-9444 / Num. 2. Vol. 5 - 2025 

https://revistas.uncu.edu.ar/ojs3/index.php/revicap 

 

 

REVISTA INGENIERÍA Y CIENCIAS APLICADAS | CC BY-NC-SA 4.0 | ISSN 2796-9444 

57 

Py2HDL presta su ayuda en la síntesis durante dos 
momentos clave. Primero, selecciona sólo las 
construcciones VHDL que tengan sentido en 
hardware. VHDL tiene múltiples propósitos, algunos 
de los cuales tienen más relación con procesos de 
simulación y de documentación que con 
implementación en hardware. Py2HDL elige un 
subconjunto de VHDL, denominado VHDL 
sintetizable, para que la herramienta de síntesis 
realice apropiadamente su trabajo. Segundo, crea un 
archivo de tipo XHC.  Este archivo instruye a la 
herramienta de síntesis para que realice un mapeado 
entre los recursos externos a la FPGA y las señales 
internas de la misma. 

Para el presente proyecto, la tarjeta de desarrollo 
empleada es una Nexys4, ampliamente utilizada en 
la academia por sus buenas prestaciones y bajo 
costo. El archivo comp.xhc es la asignación física para 
el caso del comparador. Py2HDL determina qué 
señales deben proporcionarse para uso externo y 
calcula la cantidad de bits disponibles para cada una 
en función del hardware de destino. Py2HDL asigna 
la señal de reloj al oscilador de cristal presente en la 
placa y le indica que genere una señal simétrica. 
También asigna las señales de reinicio (reset) e inicio 
(start) a los pulsadores, la señal de listo (ready) al LED 
más alto y la señal de resultado (result) al LED más 
bajo requerido (ver Figura 15). 

 

Figura 15. Código XHC de asignación física generado por 

PyHDL para el comparador (señales del sistema). 

Con respecto a las señales de parámetros, Py2HDL 
calcula la cantidad de bits que cada una puede 
contener en función de las variables Python de alto 
nivel y de la cantidad de recursos disponibles en el 
hardware. Para ello inicia con las señales de salida, 
las cuales son mapeadas hacia el conjunto de LEDs, 
teniendo en la cuenta además que, según el tipo de 
operaciones que detecte en el código fuente, 
asignará un ancho de bits igual o duplicado al de las 

señales de entrada. Posteriormente realiza una labor 
similar con las señales de entrada. Esto puede 
conllevar a que se recalcule la cantidad de bits en las 
salidas si detecta que la asignación inicial impide una 
asignación completa de las entradas. La versión 
actual de Py2HDL privilegia los escenarios de 
aprendizaje más que su uso por diseñadores más 
experimentados, por lo cual el LED más significativo 
se ha empleado para señalizar la finalización en la 
ejecución del código. Esto con miras a detectar 
posibles bucles infinitos. Para el caso de la placa 
Nexys4, la asignación detallada de recursos 
hardware se muestra en la Figura 16. 

 

Figura 16. Código XHC de asignación física generado por 

PyHDL para el comparador (señales del diseñador). 

Una vez la herramienta sintetiza el diseño, crea un 
archivo en código objeto de configuración que puede 
ser descargado a la placa de hardware. Al momento 
en que esta descarga finaliza, la configuración ya 
permanece en la tarjeta hardware indefinidamente 
hasta que sea remplazada por alguna nueva 
configuración. En estas condiciones, la tarjeta ya 
actúa como un sistema independiente, y la ejecución 
del diseño ya es posible. La Figura 17 muestra el 
resultado tras pulsar la señal de inicio cuando los 
argumentos proporcionados son los valores 5 y 2 
(binarios 0101 y 0010). 

Como segunda prueba, se cambiaron los valores a 5 
y 7 (binarios 0101 y 0111). El patrón de los LEDs 
muestra el cambio en el resultado. El LED más alto 
indica que el resultado es estable y que está 
disponible para su uso seguro (véase la Figura 18). 
Para mayor comodidad al momento de evaluar un 
diseño determinado, Py2HDL le permite al diseñador 
generar una secuencia de pruebas en lote. Si en el 
código fuente se detecta la presencia de varias 
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instrucciones print, Py2HDL generará 
automáticamente un bloque contador que actuará 
como un pequeño temporizador de tal manera que, 
una vez el resultado de la primera prueba esté 
disponible, se le dé tiempo al diseñador de 
inspeccionarlo visualmente y corroborar si es 
correcto o no y determinar si procede continuar las 
pruebas o regresar al proceso de diseño. En la 
versión actual de Py2HDL este valor de temporizado 
se fijó en 2 segundos, lo cual es suficiente para 
comprobar la mayoría de resultados en un primer 
vistazo. 

 

Figura 17. Ejecución de hardware para la prueba del 
comparador (argumentos: a=5, b=2). 

 

Figura 18. Ejecución de hardware para la prueba del 
comparador (argumentos: a=5, b=7). 

Varias otras pruebas fueron realizadas con diseños 
de mediana y alta complejidad. Éstos incluyen 
comparadores de tres y más valores, divisor, 
calculador de raíz cuadrada, detector de clave de 
acceso y una versión del juego de picas y famas 
(Parra-Plaza, 2013). Las limitaciones están dadas por 
la propia naturaleza del dispositivo. Por ejemplo, las 
operaciones matemáticas actúan sobre operadores 
enteros y la cantidad de entradas y de salidas 
depende de las que puedan alojarse en el conjunto 
de pulsadores, interruptores y LEDs de que disponga 
la tarjeta. Más que verlos como limitantes, es un 
reconocimiento del tipo de aplicaciones para las 
cuales una FPGA es conveniente. Para soluciones 
que requieran cálculos en punto flotante, un 
microprocesador sería una mejor elección; y para 

soluciones que involucren también señales 
analógicas, un buen candidato podría ser un 
dispositivo del tipo PSoC (Van Ess, 2014). 

La Figura 19 ilustra el resultado al ejecutar el código 
que extrae la raíz cuadrada de una variable num, 
para el caso en que num tiene un valor de 82 (binario 
1010010), el cual se puede observar en la disposición 
de los interruptores. Al finalizar la ejecución, 
indicada por la activación del LED más significativo, 
el resultado se observa en los cuatro LEDs menos 
significativos, que contienen el valor binario 1001, 
correspondiente al valor decimal 9, el cual es la raíz 
entera más cercana a la raíz cuadrada de 82. 

 

Figura 19. Ejecución de hardware para la prueba de raíz 

cuadrada (argumento: num=82). 

3. Resultados y Discusión 

Es posible para determinar el impacto que el empleo 
intencional de la herramienta de croscompilación 
podría tener en la mejor asimilación del contenido 
conceptual y en el desarrollo de habilidades de 
diseño en hardware reconfigurable y así 
ulteriormente en el aprendizaje, se realizaron 
diferentes pruebas a grupos de alumnos. En todos 
los casos, cada alumno interactuó con Py2HDL en 
diversas circunstancias, obedeciendo a los estilos de 
aprendizaje de Kolb (2017). En particular, el modelo 
de Kolb describe cuatro estilos de aprendizaje, 
denominados Divergente, Asimilador, Convergente y 
Acomodador, los cuales a su vez derivan de un Ciclo 
de Aprendizaje Experiencial, cuyas etapas son la 
Experiencia Concreta, la Observación Reflexiva, la 
Conceptualización Abstracta y la Experimentación 
Activa. Para el caso del presente proyecto, se hizo 
énfasis en el uso de la herramienta para las dos 
primeras etapas. 

En esencia, Kolb adhiere al concepto constructivista 
(Doyle y Zakrajsek, 2013) en cuanto a que el 
aprendizaje deviene en una construcción, en esencia 
en la formación de redes neuronales específicas en 
el cerebro del aprendiz, para soportar la 
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comprensión y elaboración del concepto o habilidad 
que se está aprendiendo. Como tal, el 
constructivismo privilegia una primera aproximación 
práctica al objeto de estudio, antes que un discurso 
conceptual, en contravía con muchas tendencias 
largamente usadas en el sector educativo. Fieles a 
ese concepto, en esta investigación se ofrece al 
estudiante una aproximación al diseño en hardware 
reconfigurable partiendo de una aplicación que le 
permite experimentar de primera mano el diseño 
hardware en VHDL (objetivo), partiendo de un 
conocimiento ya adquirido como es el lenguaje 
Python (punto de partida). De esta manera, se busca 
despertar las asociaciones pertinentes que 
favorezcan una inserción más natural a los conceptos 
más abstractos del hardware, siguiendo los 
postulados de una de las vertientes más conocidas 
del constructivismo, el aprendizaje significativo 
(Ausubel et al, 1978). 

Las actividades se desarrollaron simultáneamente 
por los alumnos, para lo cual se establecieron tres 
grupos, cada uno de 25 alumnos: A) grupo control: 
alumnos que no usaron Py2HDL, B) alumnos que 
usaron Py2HDL en su versión estándar, C) alumnos 
que usaron Py2HDL en su versión minimalista. Ésta 
es una versión que deliberamente oculta al alumno 
elementos de la plataforma que no sean pertinentes 
para su momento. En primera instancia, la interfaz 
que se ofrece es absolutamente elemental, al estilo 
del conocido buscador Google, una pantalla en 
donde solo hay una casilla para escribir código 
Python y un botón de ejecución, distinto a la versión 
estándar de la herramienta que es más afín a un IDE 
(entorno de desarrollo) convencional. 

 

Figura 20. Métricas de aprendizaje para los primeros 
grupos considerados. 

La Figura 20 muestra los resultados de las medidas 
de aprendizaje realizadas, los valores son el 
promedio por cada grupo y están dados en 
porcentajes, donde el 100% es el valor perfecto de la 
categoría. Se tomaron tres aspectos: interés, 
motivación y asimilación (Parra-Plaza, 2017). El 
interés se midió como el tiempo promedio que 
permanecía el alumno en una sesión de trabajo, la 
motivación es el número de ejercicios que realizó de 

los disponibles en la sesión y la asimilación se 
determinó como la cantidad de respuestas correctas 
que obtuvo el alumno en una prueba de suficiencia 
realizada un mes después de haber estudiado el 
tema. 

Se observa que el empleo de la herramienta como 
vehículo de interacción para desarrollar habilidades 
de diseño genera mejorías con respecto al enfoque 
convencional de dar la teoría y luego ir a sesiones de 
laboratorio, contrastando los valores para los grupos 
A y B. A su vez, se observa cómo el empleo de la 
interfaz minimalista evidenció mejorías ulteriores, 
tal como indica los mayores valores del grupo C con 
respecto al grupo B. La diferencia más notable se da 
en la asimilación, en donde la menor distracción y 
stress que produce esta interfaz hace que la 
retención y aplicación ulterior de conocimientos más 
que se duplique con respecto a la forma 
convencional de instrucción, incluso siendo ésta 
mediada tecnológicamente. 

Con miras a establecer en qué medida el uso de las 
etapas en el modelo de Kolb puede beneficiar aun 
más el proceso, se incluyó un cuarto grupo (D). En 
este grupo se realizó la etapa de Observación 
Reflexiva. Para ello, Py2HDL fue dotado de un 
módulo adicional que se beneficia de una aplicación 
de inteligencia artificial para establecer un diálogo 
con el aprendiz en cuanto a la experiencia vivida en 
las sesiones con el entorno de diseño. De nuevo, este 
diálogo se buscó que fuera también enfocado a un 
minimalismo, para lo cual la aplicación IA se alimentó 
con material adecuado para un diálogo simple pero 
reflexivo al respecto (Parra-Plaza, 2019). 

Con esta novedad se obtuvo la distribución que se 
indica en la Figura 21. Se observa que los resultados 
para el grupo D superan a todos los otros grupos. 
Este resultado sugiere que la mediación tecnológica 
aunada a paradigmas o modelos de aprendizaje 
coherentes con esta mediación son una alianza que 
beneficia tanto los procesos mismos de enseñanza 
como el desempeño a lograr por los alumnos. 

 

Figura 21. Métricas de aprendizaje para todos los grupos 
considerados. 
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4. Conclusiones 

Es posible mejorar el desarrollo de habilidades 
cognitivas realizando una exposición incremental en 
la complejidad de la información y de los procesos a 
comprender por parte de los estudiantes. De esta 
manera, se da tiempo al cerebro de que construya 
las redes neuronales correspondientes de acuerdo 
con qué tan significativo sea uno u otro aspecto del 
contenido presentado y de las actividades realizadas. 

La construcción de conocimiento que logre perdurar 
en el tiempo puede facilitarse al mediar los procesos 
educativos con soluciones tecnológicas creativas que 
se basen en paradigmas pedagógicos que tengan en 
cuenta las actividades experienciales. En la medida 
en que las actividades didácticas estén guiadas por 
un fundamento neurobiológico tanto del aprendizaje 
como de la enseñanza, es posible, de manera 
intencionada, influir positivamente en el proceso de 
desarrollo de habilidades perdurables por parte de 
los estudiantes. 

El empleo de Py2HDL como herramienta de 
intervención en el proceso educativo manifestó 
ofrecer resultados de mejora en las distintas 
dimensiones del aprendizaje que se consideraron, 
como son interés, motivación y asimilación, medidas 
tanto inmediatamente como posteriormente en el 
tiempo, indicando una demostración en la práctica 
de los principios del constructivismo en general y del 
aprendizaje significativo en particular. 

La inserción del modelo de aprendizaje de Kolb, en 
combinación con herramientas tecnológicas que 
faciliten su realización, se mostró como una 
posibilidad que incrementa la construcción de 
conocimiento, el desarrollo de habilidades y la 
retención ulterior de información y conceptos clave 
en una determinada disciplina. 

La comprensión de la concurrencia al emplear VHDL 
para el desarrollo de sistemas digitales se propicia 
mediante herramientas tecnológicas que permitan al 
alumno observar un paralelismo en la ejecución 
entre dos sistemas: el que está aprendiendo y otro 
que le sea más familiar. La complejidad asociada con 
el paralelismo intenso que subyace a todos los 
procesos que ocurren en un sistema digital, aunada 
a la complejidad comportamental cuando presenta 
retroalimentación, es más abordable si se dispone de 
un referente que esté más cercano a la cotidianidad 
y a la representación de esquemas y propuestas, 
como es el caso de Python. 

Disponer de herramientas de croscompilación 
permite establecer diferentes escenarios de 
aprendizaje en donde el protagonismo del aprendiz 
vaya gradualmente haciéndose más importante al 
pasar de conceptos básicos a intermedios y 
complejos. El uso intencional de herramientas de 
tecnología educativa permite modular la intensidad 
y la transición entre estas etapas. 

5. Referencias 

Amaranth Project (2023). Disponible en: amaranth-
lang.org/docs/amaranth/latest/guide.html 

Ausubel, D. Novak, J. y Hanesian, H. (1978). 
Educational Psychology: A Cognitive View. 
Holt, Rinehart & Winston. 

Based Learning Systems. 
Black, D. C., Donovan, J., Bunton, B. y Keist, A. (2009). 

SystemC: From the ground up. Springer. 
Blokdyk, G. (2018). Hardware-Reconfigurable 

Devices. 5STARCooks. 
Doyle, T. y Zakrajsek, T. (2013). The New Science of 

Learning: How to Learn in Harmony With 
Your Brain. Stylus Publishing. 

Jasinski, R. (2016 ). Effective Coding with VHDL: 
Principles and Best Practice. MIT Press. 

Kleitz, W. (2011). Digital Electronics: A Practical 
Approach with VHDL. Pearson. 

Kolb, A. Y. y Kolb, D. A. (2017). The Experiential 
Educator: Principles and Practices of 
Experiential Learning. Experience  

Nicolescu, G. y Mosterman, P. J. (2018). Model-
Based Design for Embedded Systems. CRC 
Press. 

O’Regan, G. A. (2021). Brief History of Computing. 
Springer. 

Parra-Plaza, J. A. (2012). Concurrent programming: 
towards an optimal computation. EIISI. 

Parra-Plaza, J. A. (2013). VHDL implementation of the 
Cows and Bulls game. Technical report. Cali 
(Colombia). Pontificia Universidad 
Javeriana. 

Parra-Plaza, J. A. (2015). High-level Synthesis 
Through a Cross-compiler from Pure Python 
to Hardware Description Languages. WCAS. 

Parra-Plaza, J. A. (2016). Custom processors design 
using Python-based high level synthesis. 
Instituto Antioqueño de Investigación. 

Parra-Plaza, J. A. (2018). Computación adaptativa 
para mediar tecnológicamente en la 
enseñanza para el aprendizaje. Instituto 
Antioqueño de Investigación. 

Parra-Plaza, J. A. (2019). Citoaprendizagem: 
Computação bioinspirada adaptativa 
focada na aprendizagem significativa. CISCI. 

https://revistas.uncu.edu.ar/ojs3/index.php/revicap


 

Revista Ingeniería y Ciencias Aplicadas 
ISSN 2796-9444 / Num. 2. Vol. 5 - 2025 

https://revistas.uncu.edu.ar/ojs3/index.php/revicap 

 

 

REVISTA INGENIERÍA Y CIENCIAS APLICADAS | CC BY-NC-SA 4.0 | ISSN 2796-9444 

61 

Parra-Plaza, J. A. (2020). Introducción a VHDL. 
Disponible en: 
www.youtube.com/watch?v=ZCX20VK5Gm
E 

Parra-Plaza, J. A. (2021). Simulación VHDL con 
ModelSim. Disponible en: 
www.youtube.com/watch?v=KTISNd4NCW
o 

Parra-Plaza, J. A. (2022). Síntesis VHDL con Vivado. 
Disponible en: 
www.youtube.com/watch?v=Q2MCcWfLN
hM 

Parra-Plaza, J. A. (2023). PyHDL: Cross-compiler from 
pure Python to Hardware Description 
Languages. Technical Report. Institución 
Universitaria Antonio José Camacho. 

Parra-Plaza, J.A. (2017). Propiciando el aprendizaje 
significativo en entornos interactivos 
mediante la inserción de moduladores 
neurogenéticos. Compdes. 

Pedroni, V. A. (2020 ). Circuit Design with VHDL. MIT 
Press. 

Rushton, A. (2011). VHDL for Logic Synthesis. Wiley. 
Van Ess, D. (2014). Learn Digital Design with PSoC, a 

bit at a time. Pearson. 
Zalar, P., Gostinčar, C., de Hoog, G. S., Uršič, V., 

Sudhadham, M., & Gunde-Cimerman, N. 
(2008). Redefinition of Aureobasidium 
pullulans and its varieties. Studies in 
Mycology, 61, 21–38. 
https://doi.org/10.3114/sim.2008.61.02  

 

 

 

 

 

 

 

 

 

https://revistas.uncu.edu.ar/ojs3/index.php/revicap

