
REVISTA INGENIERÍA Y CIENCIAS APLICADAS | CC BY-NC-SA 4.0 | ISSN 2796-9444

50

Núm. 2 Vol. 5 (2025) ISSN 2796-9444

Croscompilación Python de VHDL para promover el aprendizaje de
Hardware Reconfigurables

Jaime Alberto Parra-Plaza1*

1. Grupo de Investigación en Bionanoelectrónica, Universidad del Valle, Cali, Colombia.

*E-mail: jaimealberto.parra@gmail.com

PALABRAS CLAVES RESUMEN

Croscompilación
Hardware reconfigurable
Lenguaje de descripción de
hardware
Python

Los dispositivos de hardware reconfigurable han revolucionado la forma en que se diseñan
sistemas electrónicos a la medida y han permitido lograr soluciones que aprovechan al máximo
recursos limitados como la batería o el espacio. Sin embargo, lograr la experticia en estos
dispositivos es un reto tanto para la industria como para la academia. Si bien actualmente existen
herramientas que proveen la posibilidad de diseños en alto nivel, la eficiencia lograda en la
solución final con este método no es la más conveniente, de allí que sea aún necesario trabajar
en buena medida con diseños en bajo nivel, particularmente con lenguajes de descripción de
hardware, los cuales han mostrado ser particularmente difíciles de aprender para muchos
estudiantes en ingeniería electrónica. En este artículo se presentan los resultados de una
investigación cuyo objetivo fue la creación de una herramienta de croscompilación que permite
a los alumnos describir sus sistemas hardware en el lenguaje de alto nivel Python. La herramienta
genera una versión VHDL apropiada para sintetizar un procesador a la medida con uso óptimo
de recursos. Los resultados indican mejoras en la tasa de aprendizaje en términos de interés,
motivación y asimilación, siguiendo el modelo de estilos de aprendizaje de Kolb.

Python cross-compilation of VHDL to foster learning of
Reconfigurable Hardware

KEYWORDS ABSTRACT

Cross-compilation
Reconfigurable hardware
Hardware description
language
Python

Reconfigurable hardware devices have revolutionized the way custom electronic systems are
designed, enabling solutions that maximize the use of limited resources, such as the battery life
of portable devices or the space available in functional blocks that must operate in a macro
system with significant area constraints. However, achieving expertise in the management of
these devices is a challenge for both industry and academia. While tools currently exist that
provide high-level design capabilities, the efficiency achieved in the final solution with this
method is not optimal. Therefore, it is still necessary to work largely with low-level designs,
particularly with hardware description languages, which have proven particularly difficult to
learn for many electronic engineering students. This paper presents the results of a research
project aimed at creating a cross-compilation tool that allows students to describe their
hardware systems in a high-level language such as Python. The tool generates a VHDL version
suitable for synthesizing a custom processor with optimal resource utilization. The results
indicate an improvement in the learning rate given in terms of interest, motivation and
assimilation, following Kolb's learning styles model.

1. Introducción

La electrónica constituye uno de los pilares de la
sociedad actual. Gracias a ella, ha sido posible
automatizar un sinfín de procesos y lograr potencias
de cómputo cada vez mayores con dispositivos que
son consistentemente más pequeños y más rápidos.

En el caso particular de la electrónica digital, el
dispositivo estrella fue, y todavía lo es en gran
medida, el microprocesador. Gracias a él, los
ingenieros han podido crear sistemas cuyo poder de
cómputo supera con creces a los grandes y
monumentales equipos de cómputo que hace tan

Página web: https://revistas.uncu.edu.ar/ojs3/index.php/revicap

mailto:jaimealberto.parra@gmail.com
https://revistas.uncu.edu.ar/ojs3/index.php/revicap

Revista Ingeniería y Ciencias Aplicadas
ISSN 2796-9444 / Num. 2. Vol. 5 - 2025

https://revistas.uncu.edu.ar/ojs3/index.php/revicap

REVISTA INGENIERÍA Y CIENCIAS APLICADAS | CC BY-NC-SA 4.0 | ISSN 2796-9444

51

solo unas pocas décadas ocupaban salas enteras y
costaban millones de dólares (O’Regan, 2021).

Sin embargo, las prestaciones de los
microprocesadores actuales, y por ende su costo,
exceden por mucho las necesarias para gran
cantidad de soluciones en donde, si bien se requiere
cierto poder de cómputo, éste es sólo una fracción
del disponible en un microprocesador convencional.
Para cubrir ese segmento se han propuesto
diferentes alternativas, tales como los
microcontroladores o el hardware a la medida. No
obstante, y dado que el cambio generacional entre
una solución y la siguiente versión se mide
actualmente en meses o incluso en semanas, cuando
antes era en años, surgió hace algunas décadas un
fuerte competidor en este segmento: los dispositivos
de hardware reconfigurable (Blokdyk, 2018). El
hardware reconfigurable constituye en principio el
sueño hecho realidad de todo diseñador de sistemas
digitales. En un dispositivo se tiene un arreglo de
compuertas lógicas que inicialmente tienen una
capacidad omnipotente de conectarse unas con
otras en cualquier configuración arbitraria, de allí
que también se conozca como FPGA por la sigla en
inglés de arreglo de compuertas programable en
campo, una de las estructuras reconfigurables más
populares en este tipo de dispositivos (ver Figura 1).

Una FPGA está constituida por un conjunto de CLBs
o bloques lógicos configurables, que son pequeños
arreglos de circuitos digitales típicos, tales como un
grupo de compuertas AND, OR y XOR, junto con
algunos dispositivos de memoria como latches y flip-
flops. Entre los CLB discurren, a manera de
autopistas, líneas de conexión que pueden
seleccionarse a voluntad para que conecten un CLB
en particular con otro. Si bien este nivel de detalle es
apropiado para el diseñador mismo de los FPGA, el
ingeniero digital usa el dispositivo como una caja
negra e interactúa con ella a través de una
herramienta de configuración de alto nivel
(Nicolescu y Mosterman, 2018).

De esta manera, el diseñador puede ensayar
diferentes configuraciones circuitales para que
cuando eventualmente logre una que satisfaga los
requerimientos de diseño, decidir si procede a
fabricarlo en una pastilla de silicio dedicada o, en el
caso de que sólo se requieran algunas unidades,
dejar que el propio diseño logrado en la FPGA sea a
la vez el dispositivo de trabajo. Si bien la cantidad de
reconfiguraciones que se puede hacer en la práctica
no es infinita, sí son suficientes para que un
diseñador avezado logre obtener resultados en un
tiempo prudencial. Lograr la experticia en el diseño
digital usando FPGA requiere el dominio de un

conjunto variado de técnicas y herramientas y una
en particular se muestra particularmente retadora
para los estudiantes de ingeniería que entran al
mundo del diseño de sistemas digitales. Es en este
punto en donde la necesidad del presente proyecto
entra en escena. El proyecto, denominado Py2HDL
ofrece a los alumnos una herramienta tecnológica
que permite abordar el aprendizaje del diseño de
sistemas en hardware reconfigurable de una forma
más afín a los postulados de las ciencias pedagógicas
en cuanto a la forma en que el aprendizaje deviene
en el ser humano. Py2HDL permite a los alumnos
adquirir incrementalmente las destrezas necesarias
para comprender y dominar el lenguaje VHDL
partiendo de un lenguaje más accesible como es
Python, junto con un conjunto de dinámicas basadas
en el modelo de aprendizaje de Kolb.

Figura 1. Estructura interna de un dispositivo de
hardware reconfigurable.

2. Materiales y métodos

Entorno de desarrollo para FPGA

La complejidad de las FPGA actuales es tal que
literalmente están constituidas por cientos de miles
de compuertas lógicas, por lo que abordar un diseño
a ese nivel es impensable. Es por ello que los
fabricantes de las mismas ofrecen herramientas de
cómputo muy elaboradas que se encargan de
manejar el dispositivo a nivel de compuerta, al
tiempo que ofrecen al diseñador una interfaz que le
permite interactuar con el dispositivo a nivel de
sistema (ver Figura 2).

Por otra parte, al igual que un microprocesador es
útil en la medida en que se conectan periféricos a él,
por ejemplo teclados, pantallas, interfaces de
comunicación, etc., de la misma manera, en la

https://revistas.uncu.edu.ar/ojs3/index.php/revicap

Revista Ingeniería y Ciencias Aplicadas
ISSN 2796-9444 / Num. 2. Vol. 5 - 2025

https://revistas.uncu.edu.ar/ojs3/index.php/revicap

REVISTA INGENIERÍA Y CIENCIAS APLICADAS | CC BY-NC-SA 4.0 | ISSN 2796-9444

52

práctica, el diseño con dispositivos FPGA se hace
empleando tarjetas de desarrollo, elaboradas ya sea
por los mismos fabricantes o por terceros. Estos
módulos de desarrollo contienen periféricos para
que la comunicación con la FPGA sea más cómoda.

Periféricos típicos son por ejemplo un conjunto de
interruptores y pulsadores a manera de entrada,
arreglos de LEDs o pantallas LCD a manera de salida
y diversas interfaces de comunicación como
ethernet, USB o bluetooth (ver Figura 3).

Figura 2. Interfaz típica de un entorno de desarrollo para hardware reconfigurable

Figura 3. Tarjeta de desarrollo típica para interactuar con
un dispositivo de hardware reconfigurable.

Lenguajes de descripción de hardware

Así como una FPGA es compleja en su estructura
circuital, es tanto o más compleja cuando está en
operación como un sistema lógico secuencial. Basta
sólo con pensar en la interacción simultánea de sus
miles de celdas lógicas para darse una idea de la
magnitud comportamental que puede obtenerse.
Dado el paralelismo extremo que aparece, emplear
simples métodos de diseño como tablas de verdad o
máquinas de estado es sólo posible para diseños
muy simples. Para diseños medianos a grandes, se
hace indispensable un nivel de abstracción mucho
mayor. Es por ello que los fabricantes y los

diseñadores digitales acogieron en un momento
dado una opción que en principio se usó para la
documentación de dispositivos tipo VLSI, pero que se
ha popularizado y ha encontrado su nicho en el
mundo del hardware reconfigurable: los lenguajes
de descripción de hardware o HDL (Pedroni, 2016).

Un lenguaje de programación convencional describe
las operaciones que realiza un microprocesador ya
sea real o virtual de forma secuencial. Lenguajes
típicos son C, C++, Java o Python. Por su parte, un
HDL es un lenguaje que describe la forma en que un
circuito digital está estructurado. Si bien su
apariencia, en términos de sintaxis, puede llegar a
hacerlo similar a un lenguaje de programación, su
propósito y uso son bastante diferentes. Estas
diferencias suelen ser pasadas por alto por los
estudiantes que recién inician a usar el lenguaje e
incluso por diseñadores con más experiencia. Esto se
debe en gran medida al hecho de que nuestro
cerebro, al menos en su parte consciente,
comprende mucho más fácilmente los procesos que
son secuenciales. Aquéllos que son concurrentes,
por su propia definición, requieren ser analizados
como si se tomara una foto o instantánea de un
momento particular (Jasinski, 2016).

A pesar de que se han propuesto diversos lenguajes
de descripción de hardware, hay dos que sobresalen

https://revistas.uncu.edu.ar/ojs3/index.php/revicap

Revista Ingeniería y Ciencias Aplicadas
ISSN 2796-9444 / Num. 2. Vol. 5 - 2025

https://revistas.uncu.edu.ar/ojs3/index.php/revicap

REVISTA INGENIERÍA Y CIENCIAS APLICADAS | CC BY-NC-SA 4.0 | ISSN 2796-9444

53

y son por mucho los más populares en el mundo del
diseño digital: VHDL y Verilog. En el caso de
Latinoamérica, la preferencia es por el primero de
ellos y ese es el lenguaje que se empleó en el
presente proyecto. Se procede ahora a analizar
brevemente el HDL en sí. Para una introducción más
detallada a los conceptos fundamentales del
lenguaje, consultar (Parra-Plaza, 2020). VHDL es un
lenguaje que se basa en la definición de bloques
lógicos estructurales. Cada bloque está compuesto
ya sea por descripciones explícitas de operaciones
lógicas combinacionales o por descripciones en alto
nivel de comportamientos secuenciales. El lenguaje
es altamente jerárquico y permite anidar estructuras
a cualquier nivel de profundidad que se desee. Las
únicas operaciones nativas son las operaciones
lógicas booleanas tradicionales. Los demás
constructos se realizan por operaciones de decisión,
mediante el clásico if, y por operaciones de iteración,
al hacer uso explícito de la retroalimentación de
variables, que en el caso de VHDL se designan más
apropiadamente como señales, para indicar su
naturaleza física. Esta mezcla, que en principio es
muy conveniente para el diseñador experimentado,
constituye, según los análisis que el autor ha
realizado, una de las fuentes de mayor confusión en
el momento en que el aprendiz intenta comprender
apropiadamente el funcionamiento de un sistema
descrito en VHDL (Parra-Plaza, 2015). Considere por
caso el fragmento de código presentado en la
Figura 4.

Figura 4. Fragmento de código en VHDL ilustrando los

problemas de concurrencia.

En principio se observa que en términos de sintaxis
este código es parecido a cualquier otro lenguaje
convencional de programación. Si se analiza de esa
forma, es decir como si la ejecución fuese secuencial,
línea por línea, se tiene que pasaría por el primer if,
a partir del cual la variable a toma algún valor y,
cuando se ingresa al segundo if, ese valor de a se
usaría para asignar un valor subsecuente a la variable
res. Sin embargo, este no es el caso en el lenguaje

VHDL. Dado que él no describe instrucciones a ser
ejecutadas, sino que describe hardware, se debe
analizar como si ambos if se están ejecutando en
paralelo. De esta manera, las variables a y res, en
tanto que señales, dada su naturaleza física, están
cambiando simultáneamente. Esta forma de
comprender el funcionamiento de un código en
VHDL es bastante retadora y el diseñador debe hacer
un ejercicio constante de recordar esta
característica, en tanto la asimile y la haga parte de
su experticia (Parra-Plaza, 2012).

Croscompilación software

El primer paso en el proceso de diseño de un sistema
digital es lograr una descripción apropiada del
mismo que satisfaga los diferentes requerimientos
funcionales, comportamentales y físicos (Parra-
Plaza, 2016). En el caso del presente proyecto, esta
actividad culmina cuando se tiene un código Python
que describe esa funcionalidad. Se eligió Python
como lenguaje de descripción de alto nivel porque
satisface la mayoría de características que el autor y
su equipo definieron para tal propósito (Parra-Plaza,
2023), teniendo en la cuenta además que el presente
proyecto articula con otros proyectos en un
macroproyecto destinado a promover el aprendizaje
significativo mediante herramientas tecnológicas, en
el cual Python se emplea transversalmente (Parra-
Plaza, 2018). Es claro que los fabricantes de FPGA son
conscientes de la necesidad de disponer de lenguajes
y herramientas de descripción de alto nivel, pero las
que se ofrecen actualmente, tales como SystemC
(Black et al., 2009) o Amaranth (Amaranth Project,
2023), están aún muy ligadas al hardware y
requieren que el diseñador describa explícitamente
estructuras como el reloj del sistema o el número de
bits de cada variable. Esas características son
indeseables a la luz de la filosofía que guía este
proyecto y eso reafirma la decisión de emplear
Python en su forma nativa, sin requerir ningún tipo
de modificación ni en su sintaxis ni en su
procesamiento (Parra-Plaza, 2019).

En informática se habla de dos conceptos base con
respecto a los lenguajes de programación: lenguajes
de alto nivel y lenguajes de bajo nivel o de máquina.
Los primeros se emplean por los diseñadores
humanos para concebir un código, llamado fuente,
que representa la funcionalidad del sistema a
diseñar, los segundos los usa el hardware en sí
mismo para ejecutar el código de máquina y ejecutar
las instrucciones que implementan el diseño
especificado. La labor de traducir un código fuente a
un código máquina se denomina compilación. En el
presente proyecto se emplea un concepto distinto,
pero relacionado con el mismo, la croscompilación,

https://revistas.uncu.edu.ar/ojs3/index.php/revicap

Revista Ingeniería y Ciencias Aplicadas
ISSN 2796-9444 / Num. 2. Vol. 5 - 2025

https://revistas.uncu.edu.ar/ojs3/index.php/revicap

REVISTA INGENIERÍA Y CIENCIAS APLICADAS | CC BY-NC-SA 4.0 | ISSN 2796-9444

54

la cual consiste en tomar un código fuente en un
lenguaje de alto nivel y traducirlo a otro código
fuente en otro lenguaje de alto nivel (Kleitz, 2011).
Para el caso presente, el código fuente es Python y el
código destino es VHDL. Considérese como ejemplo
un diseño simple, el de un comparador, que realiza
la comparación entre dos valores y genera por salida
el mayor de ellos. El código fuente de Python se
muestra en la Figura 5. Se basa en una función que
toma dos parámetros, a y b, y determina mediante
una comparación directa si se debe devolver el valor
del primero o del segundo parámetro. Para mostrar
el uso de variables locales, una de ellas se emplea
para almacenar el valor a devolver. Igualmente, por
fuera de la función, es permitido generar código que
invoque a la función, capture su respuesta y la exhiba
en pantalla. Este código externo a las funciones se
usará más adelante por parte de la herramienta para
procesos de validación y verificación funcional y
comportamental.

Figura 5. Código fuente del comparador.

Tras la compilación cruzada, la herramienta, que en
adelante se identificará como Py2HDL, genera el
archivo comp.vhd, el cual contiene el código VHDL
para la función Python comp. Este archivo se
compone de varios bloques de descripción, así que
se analizará parte por parte. En primer lugar se tiene
la entidad, la cual describe la interfaz del sistema
digital con su entorno, indicando, además de su
nombre, sus señales de entrada y de salida (ver
Figura 6). Obsérvese la presencia del genérico N el
cual define la cantidad de bits que tendrán las
distintas señales. Este valor es generado
automáticamente por el croscompilador teniendo en
la cuenta la capacidad en periféricos de la tarjeta de
desarrollo destino. Cada tarjeta posee cierto número
de interruptores, los cuales se suelen emplear para
ingresar datos hacia la FPGA. Py2HDL reconoce esta
información y la usa para calcular cuántos bits puede
asignar a cada señal, de tal manera que cada señal
quede representada y que se maximice la cantidad
de bits a usar. Igualmente, se tiene la presencia de
otras señales distintas a las señales originales de
datos a y b. Estas señales (start, clock, reset, ready,
result), conocidas como señales de control, son
necesarias para el correcto funcionamiento del

hardware y para sincronizar sus procesos en los
tiempos adecuados. Como se indicó anteriormente,
los lenguajes de alto nivel usados por los fabricantes
exigen al diseñador manejar directamente estas
señales. Py2HDL intencionalmente oculta estos
detalles específicos de hardware al estudiante en sus
primeros encuentros con las FPGA. Posteriormente
estarán disponibles para que él los asuma, en la
medida en que sea procedente, siguiendo los estilos
de aprendizaje de Kolb (Kolb y Kolb, 2017).

La funcionalidad VHDL asociada a la función Python
comp se describe en la arquitectura, cuyo
encabezado, indicando los estados que tendrá el
sistema secuencial, se muestra en la Figura 7. El
nombre de los estados se genera basándose en el
tipo de sentencias y en los números de línea
presentes en el archivo fuente para facilitar la
asignación entre ellos con fines de depuración o
mejora. Por ejemplo, la asignación "temp = b", que
ocurre en la línea 4 del código Python, se relaciona
con el estado "assign4", la condición "if a>b", que
ocurre en la línea 5, se realiza en el estado "if5", y así
sucesivamente. Las variables locales se asignan a
señales con el número adecuado de bits según la
definición de los parámetros.

Figura 6. Código VHDL de destino generado por Py2HDL

para el comparador (entidad).

Figura 7. Código VHDL de destino generado por Py2HDL

para el comparador (señales).

La implementación de la funcionalidad se realiza
mediante un procesador hecho a la medida o
custom, el cual está diseñado como una ruta de
datos o datapath junto con una máquina de estados
de tipo Moore que hará las veces de controlador. La
ruta de datos se encarga de rastrear las asignaciones
en el momento oportuno, teniendo en la cuenta los
cambios en las variables del archivo fuente (véase la

https://revistas.uncu.edu.ar/ojs3/index.php/revicap

Revista Ingeniería y Ciencias Aplicadas
ISSN 2796-9444 / Num. 2. Vol. 5 - 2025

https://revistas.uncu.edu.ar/ojs3/index.php/revicap

REVISTA INGENIERÍA Y CIENCIAS APLICADAS | CC BY-NC-SA 4.0 | ISSN 2796-9444

55

Figura 8). La máquina de estados es sincrónica.
Utiliza un reloj maestro y un reinicio síncrono para
gestionar los cambios de estado. Py2HDL inserta
automáticamente un estado inactivo inicial, llamado
idle, en el que la máquina permanece hasta que sea
activada por la señal de inicio (véase la Figura 9).

Figura 8. Código VHDL de destino generado por Py2HDL

para el comparador (ruta de datos).

Figura 9. Código VHDL de destino generado por Py2HDL

para el comparador (registro de estado).

La evolución de la máquina de estados depende del
cálculo del siguiente estado (véase la Figura 10). Para
ello se tienen en la cuenta en la lista de sensibilidad
todas las señales capaces de generar eventos. Se
puede insertar un estado de finalización adicional si
el diseñador desea que la máquina permanezca en
este estado, para efectos de probar el
comportamiento del hardware. El enfoque estándar
es dejar que la máquina vuelva al estado inactivo
para que esté disponible inmediatamente para un
nuevo cálculo.

Cuando el valor a devolver es estable, el módulo
informa a su entorno dicho evento para que otros
módulos actúen de conformidad. Esto se hace
activando una señal de bandera, "ready", creada
automáticamente por Py2HDL (ver Figura 11).

Figura 10. Código VHDL de destino generado por Py2HDL
para el comparador (lógica del estado siguiente).

Figura 11. Código VHDL de destino generado por Py2HDL
para el comparador (lógica de salida).

Simulación comportamental

Previo a implementar el diseño en hardware,
conviene realizar una simulación del mismo. A
diferencia de una solución software, en donde una
simulación funcional en suficiente, una solución
hardware requiere una simulación comportamental,
en la cual se evalúe que el diseño no sólo realice la
función asignada, sino también que la haga en los
tiempos tanto absolutos como relativos necesarios.
Un simulador muy apreciado para VHDL es
ModelSim, el cual, aunque pasa por algunos cambios
al haber sido adquirido por una nueva empresa,
continúa siendo un referente en el mundo VHDL. El
simulador requiere disponer de dos archivos: El
primer archivo es el archivo de descripción y el
segundo es un banco de pruebas o testbench que
instruye al simulador con respecto a los valores que
debe asignar a cada señal de entrada y a los tiempos
en que debe hacerlo. Para una comprensión más
detallada del proceso de simulación ver (Parra-Plaza,
2021).

https://revistas.uncu.edu.ar/ojs3/index.php/revicap

Revista Ingeniería y Ciencias Aplicadas
ISSN 2796-9444 / Num. 2. Vol. 5 - 2025

https://revistas.uncu.edu.ar/ojs3/index.php/revicap

REVISTA INGENIERÍA Y CIENCIAS APLICADAS | CC BY-NC-SA 4.0 | ISSN 2796-9444

56

Py2HDL genera un archivo TB que contiene el banco
de pruebas para un diseño dado. El contenido de
este archivo se genera a partir de las instrucciones
Python que detecte por fuera de funciones, en
particular llamados a las funciones e instrucciones
print. El archivo compTB.vhd incluye las pruebas de
alto nivel realizadas en la función comp. Crea señales
para todos los puertos en comp.vhd, junto con

constantes y señales que simulan valores y variables
para las pruebas de alto nivel. Por ejemplo, probar x
= comp(5, 4) requiere la creación de la señal x y de
las constantes 5 y 4. Py2HDL ordena las constantes
incrementalmente para facilitar su inspección.
También añade valores para el periodo de la señal de
reloj y asigna todas las señales a una instancia de la
función (ver Figura 12).

Figura 12. Código VHDL de banco de pruebas generado por Py2HDL para el comparador (señales y componente).

Py2HDL genera una señal de reloj similar a la del
hardware real y activa la señal de reset durante el
primer periodo de reloj para un inicio predictivo
limpio (ver Figura 13). Las pruebas siguen una
secuencia de asignaciones que se asimilan a las
pruebas de alto nivel: se dan valores a los
argumentos, se genera la señal de inicio y se permite
que se estabilice, se pasa el control al módulo y se
programa el evento de retorno detectando el valor
de la señal listo, el resultado se asigna a la señal de
prueba y se deja estable durante varios ciclos de reloj
para que esté dispone a otros módulos (ver Figura
14).

Figura 13. Código VHDL de banco de pruebas generado
por Py2HDL para el comparador (reloj y reset).

Figura 14. Resultado de la simulación para el comprador.

Síntesis hardware

Disponer sólo del archivo vhd que describa la
funcionalidad del diseño no es suficiente para su
implementación final. Para ello, la herramienta de
desarrollo debe realizar un proceso denominado
síntesis, el cual consiste en asignar recursos o
bloques lógicos de la FPGA a cada constructo que
logre identificar en la descripción dada en VHDL
(Rushton, 2011). Para poder hacer eso es
indispensable que la herramienta conozca cuál es la
tarjeta de desarrollo sobre la cual se hará la
implementación, de tal manera que pueda asociar
los diferentes periféricos de entrada y de salida con
las señales internas correspondientes. Para una
comprensión más detallada del proceso de síntesis
ver (Parra-Plaza, 2022).

https://revistas.uncu.edu.ar/ojs3/index.php/revicap

Revista Ingeniería y Ciencias Aplicadas
ISSN 2796-9444 / Num. 2. Vol. 5 - 2025

https://revistas.uncu.edu.ar/ojs3/index.php/revicap

REVISTA INGENIERÍA Y CIENCIAS APLICADAS | CC BY-NC-SA 4.0 | ISSN 2796-9444

57

Py2HDL presta su ayuda en la síntesis durante dos
momentos clave. Primero, selecciona sólo las
construcciones VHDL que tengan sentido en
hardware. VHDL tiene múltiples propósitos, algunos
de los cuales tienen más relación con procesos de
simulación y de documentación que con
implementación en hardware. Py2HDL elige un
subconjunto de VHDL, denominado VHDL
sintetizable, para que la herramienta de síntesis
realice apropiadamente su trabajo. Segundo, crea un
archivo de tipo XHC. Este archivo instruye a la
herramienta de síntesis para que realice un mapeado
entre los recursos externos a la FPGA y las señales
internas de la misma.

Para el presente proyecto, la tarjeta de desarrollo
empleada es una Nexys4, ampliamente utilizada en
la academia por sus buenas prestaciones y bajo
costo. El archivo comp.xhc es la asignación física para
el caso del comparador. Py2HDL determina qué
señales deben proporcionarse para uso externo y
calcula la cantidad de bits disponibles para cada una
en función del hardware de destino. Py2HDL asigna
la señal de reloj al oscilador de cristal presente en la
placa y le indica que genere una señal simétrica.
También asigna las señales de reinicio (reset) e inicio
(start) a los pulsadores, la señal de listo (ready) al LED
más alto y la señal de resultado (result) al LED más
bajo requerido (ver Figura 15).

Figura 15. Código XHC de asignación física generado por

PyHDL para el comparador (señales del sistema).

Con respecto a las señales de parámetros, Py2HDL
calcula la cantidad de bits que cada una puede
contener en función de las variables Python de alto
nivel y de la cantidad de recursos disponibles en el
hardware. Para ello inicia con las señales de salida,
las cuales son mapeadas hacia el conjunto de LEDs,
teniendo en la cuenta además que, según el tipo de
operaciones que detecte en el código fuente,
asignará un ancho de bits igual o duplicado al de las

señales de entrada. Posteriormente realiza una labor
similar con las señales de entrada. Esto puede
conllevar a que se recalcule la cantidad de bits en las
salidas si detecta que la asignación inicial impide una
asignación completa de las entradas. La versión
actual de Py2HDL privilegia los escenarios de
aprendizaje más que su uso por diseñadores más
experimentados, por lo cual el LED más significativo
se ha empleado para señalizar la finalización en la
ejecución del código. Esto con miras a detectar
posibles bucles infinitos. Para el caso de la placa
Nexys4, la asignación detallada de recursos
hardware se muestra en la Figura 16.

Figura 16. Código XHC de asignación física generado por

PyHDL para el comparador (señales del diseñador).

Una vez la herramienta sintetiza el diseño, crea un
archivo en código objeto de configuración que puede
ser descargado a la placa de hardware. Al momento
en que esta descarga finaliza, la configuración ya
permanece en la tarjeta hardware indefinidamente
hasta que sea remplazada por alguna nueva
configuración. En estas condiciones, la tarjeta ya
actúa como un sistema independiente, y la ejecución
del diseño ya es posible. La Figura 17 muestra el
resultado tras pulsar la señal de inicio cuando los
argumentos proporcionados son los valores 5 y 2
(binarios 0101 y 0010).

Como segunda prueba, se cambiaron los valores a 5
y 7 (binarios 0101 y 0111). El patrón de los LEDs
muestra el cambio en el resultado. El LED más alto
indica que el resultado es estable y que está
disponible para su uso seguro (véase la Figura 18).
Para mayor comodidad al momento de evaluar un
diseño determinado, Py2HDL le permite al diseñador
generar una secuencia de pruebas en lote. Si en el
código fuente se detecta la presencia de varias

https://revistas.uncu.edu.ar/ojs3/index.php/revicap

Revista Ingeniería y Ciencias Aplicadas
ISSN 2796-9444 / Num. 2. Vol. 5 - 2025

https://revistas.uncu.edu.ar/ojs3/index.php/revicap

REVISTA INGENIERÍA Y CIENCIAS APLICADAS | CC BY-NC-SA 4.0 | ISSN 2796-9444

58

instrucciones print, Py2HDL generará
automáticamente un bloque contador que actuará
como un pequeño temporizador de tal manera que,
una vez el resultado de la primera prueba esté
disponible, se le dé tiempo al diseñador de
inspeccionarlo visualmente y corroborar si es
correcto o no y determinar si procede continuar las
pruebas o regresar al proceso de diseño. En la
versión actual de Py2HDL este valor de temporizado
se fijó en 2 segundos, lo cual es suficiente para
comprobar la mayoría de resultados en un primer
vistazo.

Figura 17. Ejecución de hardware para la prueba del
comparador (argumentos: a=5, b=2).

Figura 18. Ejecución de hardware para la prueba del
comparador (argumentos: a=5, b=7).

Varias otras pruebas fueron realizadas con diseños
de mediana y alta complejidad. Éstos incluyen
comparadores de tres y más valores, divisor,
calculador de raíz cuadrada, detector de clave de
acceso y una versión del juego de picas y famas
(Parra-Plaza, 2013). Las limitaciones están dadas por
la propia naturaleza del dispositivo. Por ejemplo, las
operaciones matemáticas actúan sobre operadores
enteros y la cantidad de entradas y de salidas
depende de las que puedan alojarse en el conjunto
de pulsadores, interruptores y LEDs de que disponga
la tarjeta. Más que verlos como limitantes, es un
reconocimiento del tipo de aplicaciones para las
cuales una FPGA es conveniente. Para soluciones
que requieran cálculos en punto flotante, un
microprocesador sería una mejor elección; y para

soluciones que involucren también señales
analógicas, un buen candidato podría ser un
dispositivo del tipo PSoC (Van Ess, 2014).

La Figura 19 ilustra el resultado al ejecutar el código
que extrae la raíz cuadrada de una variable num,
para el caso en que num tiene un valor de 82 (binario
1010010), el cual se puede observar en la disposición
de los interruptores. Al finalizar la ejecución,
indicada por la activación del LED más significativo,
el resultado se observa en los cuatro LEDs menos
significativos, que contienen el valor binario 1001,
correspondiente al valor decimal 9, el cual es la raíz
entera más cercana a la raíz cuadrada de 82.

Figura 19. Ejecución de hardware para la prueba de raíz

cuadrada (argumento: num=82).

3. Resultados y Discusión

Es posible para determinar el impacto que el empleo
intencional de la herramienta de croscompilación
podría tener en la mejor asimilación del contenido
conceptual y en el desarrollo de habilidades de
diseño en hardware reconfigurable y así
ulteriormente en el aprendizaje, se realizaron
diferentes pruebas a grupos de alumnos. En todos
los casos, cada alumno interactuó con Py2HDL en
diversas circunstancias, obedeciendo a los estilos de
aprendizaje de Kolb (2017). En particular, el modelo
de Kolb describe cuatro estilos de aprendizaje,
denominados Divergente, Asimilador, Convergente y
Acomodador, los cuales a su vez derivan de un Ciclo
de Aprendizaje Experiencial, cuyas etapas son la
Experiencia Concreta, la Observación Reflexiva, la
Conceptualización Abstracta y la Experimentación
Activa. Para el caso del presente proyecto, se hizo
énfasis en el uso de la herramienta para las dos
primeras etapas.

En esencia, Kolb adhiere al concepto constructivista
(Doyle y Zakrajsek, 2013) en cuanto a que el
aprendizaje deviene en una construcción, en esencia
en la formación de redes neuronales específicas en
el cerebro del aprendiz, para soportar la

https://revistas.uncu.edu.ar/ojs3/index.php/revicap

Revista Ingeniería y Ciencias Aplicadas
ISSN 2796-9444 / Num. 2. Vol. 5 - 2025

https://revistas.uncu.edu.ar/ojs3/index.php/revicap

REVISTA INGENIERÍA Y CIENCIAS APLICADAS | CC BY-NC-SA 4.0 | ISSN 2796-9444

59

comprensión y elaboración del concepto o habilidad
que se está aprendiendo. Como tal, el
constructivismo privilegia una primera aproximación
práctica al objeto de estudio, antes que un discurso
conceptual, en contravía con muchas tendencias
largamente usadas en el sector educativo. Fieles a
ese concepto, en esta investigación se ofrece al
estudiante una aproximación al diseño en hardware
reconfigurable partiendo de una aplicación que le
permite experimentar de primera mano el diseño
hardware en VHDL (objetivo), partiendo de un
conocimiento ya adquirido como es el lenguaje
Python (punto de partida). De esta manera, se busca
despertar las asociaciones pertinentes que
favorezcan una inserción más natural a los conceptos
más abstractos del hardware, siguiendo los
postulados de una de las vertientes más conocidas
del constructivismo, el aprendizaje significativo
(Ausubel et al, 1978).

Las actividades se desarrollaron simultáneamente
por los alumnos, para lo cual se establecieron tres
grupos, cada uno de 25 alumnos: A) grupo control:
alumnos que no usaron Py2HDL, B) alumnos que
usaron Py2HDL en su versión estándar, C) alumnos
que usaron Py2HDL en su versión minimalista. Ésta
es una versión que deliberamente oculta al alumno
elementos de la plataforma que no sean pertinentes
para su momento. En primera instancia, la interfaz
que se ofrece es absolutamente elemental, al estilo
del conocido buscador Google, una pantalla en
donde solo hay una casilla para escribir código
Python y un botón de ejecución, distinto a la versión
estándar de la herramienta que es más afín a un IDE
(entorno de desarrollo) convencional.

Figura 20. Métricas de aprendizaje para los primeros
grupos considerados.

La Figura 20 muestra los resultados de las medidas
de aprendizaje realizadas, los valores son el
promedio por cada grupo y están dados en
porcentajes, donde el 100% es el valor perfecto de la
categoría. Se tomaron tres aspectos: interés,
motivación y asimilación (Parra-Plaza, 2017). El
interés se midió como el tiempo promedio que
permanecía el alumno en una sesión de trabajo, la
motivación es el número de ejercicios que realizó de

los disponibles en la sesión y la asimilación se
determinó como la cantidad de respuestas correctas
que obtuvo el alumno en una prueba de suficiencia
realizada un mes después de haber estudiado el
tema.

Se observa que el empleo de la herramienta como
vehículo de interacción para desarrollar habilidades
de diseño genera mejorías con respecto al enfoque
convencional de dar la teoría y luego ir a sesiones de
laboratorio, contrastando los valores para los grupos
A y B. A su vez, se observa cómo el empleo de la
interfaz minimalista evidenció mejorías ulteriores,
tal como indica los mayores valores del grupo C con
respecto al grupo B. La diferencia más notable se da
en la asimilación, en donde la menor distracción y
stress que produce esta interfaz hace que la
retención y aplicación ulterior de conocimientos más
que se duplique con respecto a la forma
convencional de instrucción, incluso siendo ésta
mediada tecnológicamente.

Con miras a establecer en qué medida el uso de las
etapas en el modelo de Kolb puede beneficiar aun
más el proceso, se incluyó un cuarto grupo (D). En
este grupo se realizó la etapa de Observación
Reflexiva. Para ello, Py2HDL fue dotado de un
módulo adicional que se beneficia de una aplicación
de inteligencia artificial para establecer un diálogo
con el aprendiz en cuanto a la experiencia vivida en
las sesiones con el entorno de diseño. De nuevo, este
diálogo se buscó que fuera también enfocado a un
minimalismo, para lo cual la aplicación IA se alimentó
con material adecuado para un diálogo simple pero
reflexivo al respecto (Parra-Plaza, 2019).

Con esta novedad se obtuvo la distribución que se
indica en la Figura 21. Se observa que los resultados
para el grupo D superan a todos los otros grupos.
Este resultado sugiere que la mediación tecnológica
aunada a paradigmas o modelos de aprendizaje
coherentes con esta mediación son una alianza que
beneficia tanto los procesos mismos de enseñanza
como el desempeño a lograr por los alumnos.

Figura 21. Métricas de aprendizaje para todos los grupos
considerados.

https://revistas.uncu.edu.ar/ojs3/index.php/revicap

Revista Ingeniería y Ciencias Aplicadas
ISSN 2796-9444 / Num. 2. Vol. 5 - 2025

https://revistas.uncu.edu.ar/ojs3/index.php/revicap

REVISTA INGENIERÍA Y CIENCIAS APLICADAS | CC BY-NC-SA 4.0 | ISSN 2796-9444

60

4. Conclusiones

Es posible mejorar el desarrollo de habilidades
cognitivas realizando una exposición incremental en
la complejidad de la información y de los procesos a
comprender por parte de los estudiantes. De esta
manera, se da tiempo al cerebro de que construya
las redes neuronales correspondientes de acuerdo
con qué tan significativo sea uno u otro aspecto del
contenido presentado y de las actividades realizadas.

La construcción de conocimiento que logre perdurar
en el tiempo puede facilitarse al mediar los procesos
educativos con soluciones tecnológicas creativas que
se basen en paradigmas pedagógicos que tengan en
cuenta las actividades experienciales. En la medida
en que las actividades didácticas estén guiadas por
un fundamento neurobiológico tanto del aprendizaje
como de la enseñanza, es posible, de manera
intencionada, influir positivamente en el proceso de
desarrollo de habilidades perdurables por parte de
los estudiantes.

El empleo de Py2HDL como herramienta de
intervención en el proceso educativo manifestó
ofrecer resultados de mejora en las distintas
dimensiones del aprendizaje que se consideraron,
como son interés, motivación y asimilación, medidas
tanto inmediatamente como posteriormente en el
tiempo, indicando una demostración en la práctica
de los principios del constructivismo en general y del
aprendizaje significativo en particular.

La inserción del modelo de aprendizaje de Kolb, en
combinación con herramientas tecnológicas que
faciliten su realización, se mostró como una
posibilidad que incrementa la construcción de
conocimiento, el desarrollo de habilidades y la
retención ulterior de información y conceptos clave
en una determinada disciplina.

La comprensión de la concurrencia al emplear VHDL
para el desarrollo de sistemas digitales se propicia
mediante herramientas tecnológicas que permitan al
alumno observar un paralelismo en la ejecución
entre dos sistemas: el que está aprendiendo y otro
que le sea más familiar. La complejidad asociada con
el paralelismo intenso que subyace a todos los
procesos que ocurren en un sistema digital, aunada
a la complejidad comportamental cuando presenta
retroalimentación, es más abordable si se dispone de
un referente que esté más cercano a la cotidianidad
y a la representación de esquemas y propuestas,
como es el caso de Python.

Disponer de herramientas de croscompilación
permite establecer diferentes escenarios de
aprendizaje en donde el protagonismo del aprendiz
vaya gradualmente haciéndose más importante al
pasar de conceptos básicos a intermedios y
complejos. El uso intencional de herramientas de
tecnología educativa permite modular la intensidad
y la transición entre estas etapas.

5. Referencias

Amaranth Project (2023). Disponible en: amaranth-
lang.org/docs/amaranth/latest/guide.html

Ausubel, D. Novak, J. y Hanesian, H. (1978).
Educational Psychology: A Cognitive View.
Holt, Rinehart & Winston.

Based Learning Systems.
Black, D. C., Donovan, J., Bunton, B. y Keist, A. (2009).

SystemC: From the ground up. Springer.
Blokdyk, G. (2018). Hardware-Reconfigurable

Devices. 5STARCooks.
Doyle, T. y Zakrajsek, T. (2013). The New Science of

Learning: How to Learn in Harmony With
Your Brain. Stylus Publishing.

Jasinski, R. (2016). Effective Coding with VHDL:
Principles and Best Practice. MIT Press.

Kleitz, W. (2011). Digital Electronics: A Practical
Approach with VHDL. Pearson.

Kolb, A. Y. y Kolb, D. A. (2017). The Experiential
Educator: Principles and Practices of
Experiential Learning. Experience

Nicolescu, G. y Mosterman, P. J. (2018). Model-
Based Design for Embedded Systems. CRC
Press.

O’Regan, G. A. (2021). Brief History of Computing.
Springer.

Parra-Plaza, J. A. (2012). Concurrent programming:
towards an optimal computation. EIISI.

Parra-Plaza, J. A. (2013). VHDL implementation of the
Cows and Bulls game. Technical report. Cali
(Colombia). Pontificia Universidad
Javeriana.

Parra-Plaza, J. A. (2015). High-level Synthesis
Through a Cross-compiler from Pure Python
to Hardware Description Languages. WCAS.

Parra-Plaza, J. A. (2016). Custom processors design
using Python-based high level synthesis.
Instituto Antioqueño de Investigación.

Parra-Plaza, J. A. (2018). Computación adaptativa
para mediar tecnológicamente en la
enseñanza para el aprendizaje. Instituto
Antioqueño de Investigación.

Parra-Plaza, J. A. (2019). Citoaprendizagem:
Computação bioinspirada adaptativa
focada na aprendizagem significativa. CISCI.

https://revistas.uncu.edu.ar/ojs3/index.php/revicap

Revista Ingeniería y Ciencias Aplicadas
ISSN 2796-9444 / Num. 2. Vol. 5 - 2025

https://revistas.uncu.edu.ar/ojs3/index.php/revicap

REVISTA INGENIERÍA Y CIENCIAS APLICADAS | CC BY-NC-SA 4.0 | ISSN 2796-9444

61

Parra-Plaza, J. A. (2020). Introducción a VHDL.
Disponible en:
www.youtube.com/watch?v=ZCX20VK5Gm
E

Parra-Plaza, J. A. (2021). Simulación VHDL con
ModelSim. Disponible en:
www.youtube.com/watch?v=KTISNd4NCW
o

Parra-Plaza, J. A. (2022). Síntesis VHDL con Vivado.
Disponible en:
www.youtube.com/watch?v=Q2MCcWfLN
hM

Parra-Plaza, J. A. (2023). PyHDL: Cross-compiler from
pure Python to Hardware Description
Languages. Technical Report. Institución
Universitaria Antonio José Camacho.

Parra-Plaza, J.A. (2017). Propiciando el aprendizaje
significativo en entornos interactivos
mediante la inserción de moduladores
neurogenéticos. Compdes.

Pedroni, V. A. (2020). Circuit Design with VHDL. MIT
Press.

Rushton, A. (2011). VHDL for Logic Synthesis. Wiley.
Van Ess, D. (2014). Learn Digital Design with PSoC, a

bit at a time. Pearson.
Zalar, P., Gostinčar, C., de Hoog, G. S., Uršič, V.,

Sudhadham, M., & Gunde-Cimerman, N.
(2008). Redefinition of Aureobasidium
pullulans and its varieties. Studies in
Mycology, 61, 21–38.
https://doi.org/10.3114/sim.2008.61.02

https://revistas.uncu.edu.ar/ojs3/index.php/revicap

