Nuam. 2 Vol. 5 (2025) ISSN 2796-9444

- Revista de Ingenieria y Ciencias Aplicadas. (RevICAp)

& RaviCAp

Revista de Ingenieria
d i i
REVISTAS-UNCUYOD Pégina web: https://revistas.uncu.edu.ar/ojs3/index.php/revica ¥ Clenclas Aplicadas

Portal de Revistas Digitales en 015

*)

Croscompilacion Python de VHDL para promover el aprendizaje de
Hardware Reconfigurables

Jaime Alberto Parra-Plaza®

1. Grupo de Investigacidn en Bionanoelectrdnica, Universidad del Valle, Cali, Colombia.

*E-mail: jaimealberto.parra@gmail.com

PALABRAS CLAVES RESUMEN

Croscompilacién Los dispositivos de hardware reconfigurable han revolucionado la forma en que se disefian
Hardware reconfigurable sistemas electrdnicos a la medida y han permitido lograr soluciones que aprovechan al maximo
Lenguaje de descripcion de recursos limitados como la bateria o el espacio. Sin embargo, lograr la experticia en estos
hardware dispositivos es un reto tanto para laindustria como para la academia. Si bien actualmente existen
Python herramientas que proveen la posibilidad de disefios en alto nivel, la eficiencia lograda en la

solucion final con este método no es la mas conveniente, de alli que sea aun necesario trabajar
en buena medida con disefios en bajo nivel, particularmente con lenguajes de descripcién de
hardware, los cuales han mostrado ser particularmente dificiles de aprender para muchos
estudiantes en ingenieria electronica. En este articulo se presentan los resultados de una
investigacion cuyo objetivo fue la creacion de una herramienta de croscompilacion que permite
a los alumnos describir sus sistemas hardware en el lenguaje de alto nivel Python. La herramienta
genera una versién VHDL apropiada para sintetizar un procesador a la medida con uso éptimo
de recursos. Los resultados indican mejoras en la tasa de aprendizaje en términos de interés,
motivacidn y asimilacion, siguiendo el modelo de estilos de aprendizaje de Kolb.

Python cross-compilation of VHDL to foster learning of
Reconfigurable Hardware

KEYWORDS ABSTRACT

Cross-compilation Reconfigurable hardware devices have revolutionized the way custom electronic systems are
Reconfigurable hardware designed, enabling solutions that maximize the use of limited resources, such as the battery life
Hardware description of portable devices or the space available in functional blocks that must operate in a macro
language system with significant area constraints. However, achieving expertise in the management of
Python these devices is a challenge for both industry and academia. While tools currently exist that

provide high-level design capabilities, the efficiency achieved in the final solution with this
method is not optimal. Therefore, it is still necessary to work largely with low-level designs,
particularly with hardware description languages, which have proven particularly difficult to
learn for many electronic engineering students. This paper presents the results of a research
project aimed at creating a cross-compilation tool that allows students to describe their
hardware systems in a high-level language such as Python. The tool generates a VHDL version
suitable for synthesizing a custom processor with optimal resource utilization. The results
indicate an improvement in the learning rate given in terms of interest, motivation and
assimilation, following Kolb's learning styles model.

1. Introduccion En el caso particular de la electrénica digital, el
dispositivo estrella fue, y todavia lo es en gran
medida, el microprocesador. Gracias a él, los
ingenieros han podido crear sistemas cuyo poder de
cOmputo supera con creces a los grandes y
monumentales equipos de cdmputo que hace tan

La electrénica constituye uno de los pilares de la
sociedad actual. Gracias a ella, ha sido posible
automatizar un sinfin de procesos y lograr potencias
de cOmputo cada vez mayores con dispositivos que
son consistentemente mas pequefios y mas rapidos.

REVISTA INGENIERIA Y CIENCIAS APLICADAS | CC BY-NC-SA 4.0 | ISSN 2796-9444
50

mailto:jaimealberto.parra@gmail.com
https://revistas.uncu.edu.ar/ojs3/index.php/revicap

7RicAp

Revista Ingenieria y Ciencias Aplicadas
ISSN 2796-9444 / Num. 2. Vol. 5 - 2025
https:/revistas.uncu.edu.ar/ojs3/index.php/revicap

solo unas pocas décadas ocupaban salas enteras y
costaban millones de ddlares (O’'Regan, 2021).

Sin embargo, las prestaciones de los
microprocesadores actuales, y por ende su costo,
exceden por mucho las necesarias para gran
cantidad de soluciones en donde, si bien se requiere
cierto poder de computo, éste es sélo una fraccion
del disponible en un microprocesador convencional.
Para cubrir ese segmento se han propuesto
diferentes alternativas, tales como los
microcontroladores o el hardware a la medida. No
obstante, y dado que el cambio generacional entre
una solucion y la siguiente version se mide
actualmente en meses o incluso en semanas, cuando
antes era en afios, surgié hace algunas décadas un
fuerte competidor en este segmento: los dispositivos
de hardware reconfigurable (Blokdyk, 2018). El
hardware reconfigurable constituye en principio el
suefio hecho realidad de todo disefiador de sistemas
digitales. En un dispositivo se tiene un arreglo de
compuertas logicas que inicialmente tienen una
capacidad omnipotente de conectarse unas con
otras en cualquier configuracién arbitraria, de alli
gue también se conozca como FPGA por la sigla en
inglés de arreglo de compuertas programable en
campo, una de las estructuras reconfigurables mas
populares en este tipo de dispositivos (ver Figura 1).

Una FPGA estd constituida por un conjunto de CLBs
o bloques ldgicos configurables, que son pequefios
arreglos de circuitos digitales tipicos, tales como un
grupo de compuertas AND, OR y XOR, junto con
algunos dispositivos de memoria como latches y flip-
flops. Entre los CLB discurren, a manera de
autopistas, lineas de conexion que pueden
seleccionarse a voluntad para que conecten un CLB
en particular con otro. Si bien este nivel de detalle es
apropiado para el disefiador mismo de los FPGA, el
ingeniero digital usa el dispositivo como una caja
negra e interactia con ella a través de una
herramienta de configuracion de alto nivel
(Nicolescu y Mosterman, 2018).

De esta manera, el disefiador puede ensayar
diferentes configuraciones circuitales para que
cuando eventualmente logre una que satisfaga los
requerimientos de diseflo, decidir si procede a
fabricarlo en una pastilla de silicio dedicada o, en el
caso de que sélo se requieran algunas unidades,
dejar que el propio disefio logrado en la FPGA sea a
la vez el dispositivo de trabajo. Si bien la cantidad de
reconfiguraciones que se puede hacer en la practica
no es infinita, si son suficientes para que un
disefiador avezado logre obtener resultados en un
tiempo prudencial. Lograr la experticia en el disefio
digital usando FPGA requiere el dominio de un

conjunto variado de técnicas y herramientas y una
en particular se muestra particularmente retadora
para los estudiantes de ingenieria que entran al
mundo del disefio de sistemas digitales. Es en este
punto en donde la necesidad del presente proyecto
entra en escena. El proyecto, denominado Py2HDL
ofrece a los alumnos una herramienta tecnoldgica
que permite abordar el aprendizaje del disefio de
sistemas en hardware reconfigurable de una forma
mas afin a los postulados de las ciencias pedagdgicas
en cuanto a la forma en que el aprendizaje deviene
en el ser humano. Py2HDL permite a los alumnos
adquirir incrementalmente las destrezas necesarias
para comprender y dominar el lenguaje VHDL
partiendo de un lenguaje mas accesible como es
Python, junto con un conjunto de dindmicas basadas
en el modelo de aprendizaje de Kolb.

10 Blocks D DD ED
(LB (LB cL8 CLB
|
L > 1
PIPBlock< (LB (41} LB L8
] |
| L
Prog bl cLB8 cB CLB CLB
Interconnects r D
| Ll
CLB cLB CLB cL8
0O OO 03

Figura 1. Estructura interna de un dispositivo de
hardware reconfigurable.

2. Materiales y métodos

Entorno de desarrollo para FPGA

La complejidad de las FPGA actuales es tal que
literalmente estan constituidas por cientos de miles
de compuertas légicas, por lo que abordar un disefio
a ese nivel es impensable. Es por ello que los
fabricantes de las mismas ofrecen herramientas de
computo muy elaboradas que se encargan de
manejar el dispositivo a nivel de compuerta, al
tiempo que ofrecen al disefiador una interfaz que le
permite interactuar con el dispositivo a nivel de
sistema (ver Figura 2).

Por otra parte, al igual que un microprocesador es
atil en la medida en que se conectan periféricos a él,
por ejemplo teclados, pantallas, interfaces de
comunicacion, etc.,, de la misma manera, en la

REVISTA INGENIERIA Y CIENCIAS APLICADAS | CC BY-NC-SA 4.0 | ISSN 2796-9444

51

https://revistas.uncu.edu.ar/ojs3/index.php/revicap

7RicAp

Revista Ingenieria y Ciencias Aplicadas
ISSN 2796-9444 / Num. 2. Vol. 5 - 2025
https://revistas.uncu.edu.ar/ojs3/index.php/revicap

practica, el disefio con dispositivos FPGA se hace
empleando tarjetas de desarrollo, elaboradas ya sea
por los mismos fabricantes o por terceros. Estos
modulos de desarrollo contienen periféricos para
que la comunicacion con la FPGA sea mas comoda.

4 project 1

File Edit Flow Tools Repots Window Layout View Help - Quick Access

Periféricos tipicos son por ejemplo un conjunto de
interruptores y pulsadores a manera de entrada,
arreglos de LEDs o pantallas LCD a manera de salida
y diversas interfaces de comunicacion como
ethernet, USB o bluetooth (ver Figura 3).

- o X

Implementation Complete

Timing Analysis v

=, ® b B X O O 8 X X
Flow Navigator s 2 _ U - constrs_2 |
v PROJECT MANAGER fe
Sources Netiisx PathP| 2 _ O 4 | | Project Summary
% Settings
=z o
Add Sources
top B
T
Language Templates b o i
> Leaf Cells (223
¥ SIMULATION > [clkgen (c
Run Simulation cpuENgine (or1200_t
> Nets (2
V' NETLIST ANALYSIS 3@ LeatCells (23]
> Open Synthesized Design 2 I tnu-dtg datYFioRUer B9
v [Z] cpu_dbg_dat_o (FifoBuffer_84;
> = Nets (68
v IMPLEMENTATION
v (3] buffer_fifo (async_fifo_104
» Runimplementation T —
' Open Implemented Design > Leaf Cells (1
Constraints Wizard > [E] cpu_dwb_dat i
> [cpu_dwb_dat_o
Edit Timing Constraints
v [1] cpu_iwb_adr_o (Fi
© Report Timing Summary
Report Clock Networks Tel Console sages | Log
Report Clock Interaction QT 2 nle B &

Reading placer database...
Reading XDEF routing.

Read XDEF File: Time (s): cpu =
Restored from archive | CEU
Finished XDEF File Restore: Time (
Netlist sorting complete. Time (s)
THED- (Praiact

<

Report Methodology
Report DRC
Report Noise
Report Utilization

% Report Power

¥4 Schematic v

11111 D iz Tracefarmat:

Device

Ty (MB): peak = 2191.301 ; gain =
. Memory (MB): peak = 2161.301 ; gain

Figura 2. Interfaz tipica de un entorno de desarrollo para hardware reconfigurable

Figura 3. Tarjeta de desarrollo tipica para interactuar con
un dispositivo de hardware reconfigurable.

Lenguajes de descripcion de hardware

Asi como una FPGA es compleja en su estructura
circuital, es tanto o mas compleja cuando esta en
operacion como un sistema légico secuencial. Basta
sélo con pensar en la interaccion simultanea de sus
miles de celdas ldgicas para darse una idea de la
magnitud comportamental que puede obtenerse.
Dado el paralelismo extremo que aparece, emplear
simples métodos de disefio como tablas de verdad o
maquinas de estado es sélo posible para disefios
muy simples. Para disefios medianos a grandes, se
hace indispensable un nivel de abstraccién mucho
mayor. Es por ello que los fabricantes y los

disefadores digitales acogieron en un momento
dado una opcién que en principio se usd para la
documentacién de dispositivos tipo VLSI, pero que se
ha popularizado y ha encontrado su nicho en el
mundo del hardware reconfigurable: los lenguajes
de descripcion de hardware o HDL (Pedroni, 2016).

Un lenguaje de programacién convencional describe
las operaciones que realiza un microprocesador ya
sea real o virtual de forma secuencial. Lenguajes
tipicos son C, C++, Java o Python. Por su parte, un
HDL es un lenguaje que describe la forma en que un
circuito digital estd estructurado. Si bien su
apariencia, en términos de sintaxis, puede llegar a
hacerlo similar a un lenguaje de programacion, su
propdsito y uso son bastante diferentes. Estas
diferencias suelen ser pasadas por alto por los
estudiantes que recién inician a usar el lenguaje e
incluso por disefiadores con mas experiencia. Esto se
debe en gran medida al hecho de que nuestro
cerebro, al menos en su parte consciente,
comprende mucho mas facilmente los procesos que
son secuenciales. Aguéllos que son concurrentes,
por su propia definicidn, requieren ser analizados
como si se tomara una foto o instantanea de un
momento particular (Jasinski, 2016).

A pesar de que se han propuesto diversos lenguajes
de descripcién de hardware, hay dos que sobresalen

REVISTA INGENIERIA Y CIENCIAS APLICADAS | CC BY-NC-SA 4.0 | ISSN 2796-9444

52

https://revistas.uncu.edu.ar/ojs3/index.php/revicap

ﬂ?e\lCAp

Revista Ingenieria y Ciencias Aplicadas
ISSN 2796-9444 / Num. 2. Vol. 5 - 2025
https://revistas.uncu.edu.ar/ojs3/index.php/revicap

y son por mucho los mas populares en el mundo del
disefio digital: VHDL y Verilog. En el caso de
Latinoamérica, la preferencia es por el primero de
ellos y ese es el lenguaje que se empled en el
presente proyecto. Se procede ahora a analizar
brevemente el HDL en si. Para una introduccién mas
detallada a los conceptos fundamentales del
lenguaje, consultar (Parra-Plaza, 2020). VHDL es un
lenguaje que se basa en la definicion de bloques
légicos estructurales. Cada bloque estd compuesto
ya sea por descripciones explicitas de operaciones
I6gicas combinacionales o por descripciones en alto
nivel de comportamientos secuenciales. El lenguaje
es altamente jerarquico y permite anidar estructuras
a cualquier nivel de profundidad que se desee. Las
Unicas operaciones nativas son las operaciones
légicas booleanas tradicionales. Los demas
constructos se realizan por operaciones de decision,
mediante el cldsico if, y por operaciones de iteracion,
al hacer uso explicito de la retroalimentacién de
variables, que en el caso de VHDL se designan mas
apropiadamente como sefales, para indicar su
naturaleza fisica. Esta mezcla, que en principio es
muy conveniente para el disefiador experimentado,
constituye, segun los andlisis que el autor ha
realizado, una de las fuentes de mayor confusién en
el momento en que el aprendiz intenta comprender
apropiadamente el funcionamiento de un sistema
descrito en VHDL (Parra-Plaza, 2015). Considere por
caso el fragmento de cddigo presentado en la
Figura 4.

if pol='1' then @O
a <= bufl; (INE)
else

a <= not bufi; @
end if;

if act='1' then OO
res<=aorb; @
else

res <= a and b; @3
end if;

Figura 4. Fragmento de cédigo en VHDL ilustrando los
problemas de concurrencia.

En principio se observa que en términos de sintaxis
este cddigo es parecido a cualquier otro lenguaje
convencional de programacion. Si se analiza de esa
forma, es decir como si la ejecucion fuese secuencial,
linea por linea, se tiene que pasaria por el primer if,
a partir del cual la variable a toma algun valor v,
cuando se ingresa al segundo if, ese valor de a se
usaria para asignar un valor subsecuente ala variable
res. Sin embargo, este no es el caso en el lenguaje

VHDL. Dado que él no describe instrucciones a ser
ejecutadas, sino que describe hardware, se debe
analizar como si ambos if se estan ejecutando en
paralelo. De esta manera, las variables a y res, en
tanto que sefiales, dada su naturaleza fisica, estan
cambiando simultdneamente. Esta forma de
comprender el funcionamiento de un cédigo en
VHDL es bastante retadora y el disefiador debe hacer
un ejercicio constante de recordar esta
caracteristica, en tanto la asimile y la haga parte de
su experticia (Parra-Plaza, 2012).

Croscompilacion software

El primer paso en el proceso de disefio de un sistema
digital es lograr una descripcion apropiada del
mismo que satisfaga los diferentes requerimientos
funcionales, comportamentales y fisicos (Parra-
Plaza, 2016). En el caso del presente proyecto, esta
actividad culmina cuando se tiene un cédigo Python
que describe esa funcionalidad. Se eligio Python
como lenguaje de descripcion de alto nivel porque
satisface la mayoria de caracteristicas que el autor y
su equipo definieron para tal propdsito (Parra-Plaza,
2023), teniendo en la cuenta ademas que el presente
proyecto articula con otros proyectos en un
macroproyecto destinado a promover el aprendizaje
significativo mediante herramientas tecnoldgicas, en
el cual Python se emplea transversalmente (Parra-
Plaza, 2018). Es claro que los fabricantes de FPGA son
conscientes de la necesidad de disponer de lenguajes
y herramientas de descripcién de alto nivel, pero las
que se ofrecen actualmente, tales como SystemC
(Black et al., 2009) o Amaranth (Amaranth Project,
2023), estan aun muy ligadas al hardware vy
requieren que el disefiador describa explicitamente
estructuras como el reloj del sistema o el nimero de
bits de cada variable. Esas caracteristicas son
indeseables a la luz de la filosofia que guia este
proyecto y eso reafirma la decision de emplear
Python en su forma nativa, sin requerir ningln tipo
de modificacién ni en su sintaxis ni en su
procesamiento (Parra-Plaza, 2019).

En informatica se habla de dos conceptos base con
respecto a los lenguajes de programacion: lenguajes
de alto nivel y lenguajes de bajo nivel o de maquina.
Los primeros se emplean por los disefiadores
humanos para concebir un cddigo, llamado fuente,
que representa la funcionalidad del sistema a
disenar, los segundos los usa el hardware en si
mismo para ejecutar el cddigo de maquinay ejecutar
las instrucciones que implementan el disefio
especificado. La labor de traducir un cddigo fuente a
un codigo maquina se denomina compilacién. En el
presente proyecto se emplea un concepto distinto,
pero relacionado con el mismo, la croscompilacion,

REVISTA INGENIERIA Y CIENCIAS APLICADAS | CC BY-NC-SA 4.0 | ISSN 2796-9444

53

https://revistas.uncu.edu.ar/ojs3/index.php/revicap

7RicAp

Revista Ingenieria y Ciencias Aplicadas
ISSN 2796-9444 / Num. 2. Vol. 5 - 2025
https:/revistas.uncu.edu.ar/ojs3/index.php/revicap

la cual consiste en tomar un cédigo fuente en un
lenguaje de alto nivel y traducirlo a otro cédigo
fuente en otro lenguaje de alto nivel (Kleitz, 2011).
Para el caso presente, el codigo fuente es Python y el
cédigo destino es VHDL. Considérese como ejemplo
un diseio simple, el de un comparador, que realiza
la comparacién entre dos valores y genera por salida
el mayor de ellos. El cddigo fuente de Python se
muestra en la Figura 5. Se basa en una funcion que
toma dos parametros, a y b, y determina mediante
una comparacién directa si se debe devolver el valor
del primero o del segundo parametro. Para mostrar
el uso de variables locales, una de ellas se emplea
para almacenar el valor a devolver. Igualmente, por
fuera de la funcidn, es permitido generar cédigo que
invoque a la funcion, capture su respuestay la exhiba
en pantalla. Este codigo externo a las funciones se
usara mas adelante por parte de la herramienta para
procesos de validacion y verificacion funcional y
comportamental.

1 # sample file for pyhdl: if simple
2
3 def comp(a, b):
4 temp = b
if arb:
temp = a
return temp

=1 o n

8

8 x = comp(5, 4)
10 print x
11

Figura 5. Cédigo fuente del comparador.

Tras la compilacién cruzada, la herramienta, que en
adelante se identificarda como Py2HDL, genera el
archivo comp.vhd, el cual contiene el cédigo VHDL
para la funcion Python comp. Este archivo se
compone de varios bloques de descripcion, asi que
se analizara parte por parte. En primer lugar se tiene
la entidad, la cual describe la interfaz del sistema
digital con su entorno, indicando, ademas de su
nombre, sus sefiales de entrada y de salida (ver
Figura 6). Obsérvese la presencia del genérico N el
cual define la cantidad de bits que tendran las
distintas sefiales. Este valor es generado
automaticamente por el croscompilador teniendo en
la cuenta la capacidad en periféricos de la tarjeta de
desarrollo destino. Cada tarjeta posee cierto nimero
de interruptores, los cuales se suelen emplear para
ingresar datos hacia la FPGA. Py2HDL reconoce esta
informacidn y la usa para calcular cuantos bits puede
asignar a cada sefial, de tal manera que cada sefial
guede representada y que se maximice la cantidad
de bits a usar. Igualmente, se tiene la presencia de
otras sefiales distintas a las sefiales originales de
datos a y b. Estas sefiales (start, clock, reset, ready,
result), conocidas como sefiales de control, son
necesarias para el correcto funcionamiento del

hardware y para sincronizar sus procesos en los
tiempos adecuados. Como se indicé anteriormente,
los lenguajes de alto nivel usados por los fabricantes
exigen al disefiador manejar directamente estas
sefiales. Py2HDL intencionalmente oculta estos
detalles especificos de hardware al estudiante en sus
primeros encuentros con las FPGA. Posteriormente
estaran disponibles para que él los asuma, en la
medida en que sea procedente, siguiendo los estilos
de aprendizaje de Kolb (Kolb y Kolb, 2017).

La funcionalidad VHDL asociada a la funcién Python
comp se describe en la arquitectura, cuyo
encabezado, indicando los estados que tendra el
sistema secuencial, se muestra en la Figura 7. El
nombre de los estados se genera basandose en el
tipo de sentencias y en los numeros de linea
presentes en el archivo fuente para facilitar la
asignacion entre ellos con fines de depuracién o
mejora. Por ejemplo, la asignacion "temp = b", que
ocurre en la linea 4 del cédigo Python, se relaciona
con el estado "assign4", la condicion "if a>b", que
ocurre en lalinea 5, se realiza en el estado "if5", y asi
sucesivamente. Las variables locales se asignan a
sefiales con el numero adecuado de bits segun la
definicion de los parametros.

1library ieee;

2use ieee.std logic 1164.all;

Juse ieee.numeric_std.all:

4

Sentity comp is

& generic (N : integer := 4);

T port{start @ in std logic:

] clock @ in std logic:

9 reset @ in std logic;
10 a : in signed(N-1 downto 0);
11 b : in signed(N-1 downto 0);
12 result @ out signed(N-1 downto 0);
13 ready : out std logic):
14 end comp;
15

Figura 6. Cédigo VHDL de destino generado por Py2HDL
para el comparador (entidad).

16 architecture arch of comp is

17 type state i3 (idle, assignd, if5, assigné, return?, finish):
18 3ignal current3tate, next3tate : 3tate;

13 gignal temp : signed(N-1 downtoc 0);

20

Figura 7. Cédigo VHDL de destino generado por Py2HDL
para el comparador (sefiales).

La implementacion de la funcionalidad se realiza
mediante un procesador hecho a la medida o
custom, el cual estd disefiado como una ruta de
datos o datapath junto con una maquina de estados
de tipo Moore que hara las veces de controlador. La
ruta de datos se encarga de rastrear las asignaciones
en el momento oportuno, teniendo en la cuenta los
cambios en las variables del archivo fuente (véase la

REVISTA INGENIERIA Y CIENCIAS APLICADAS | CC BY-NC-SA 4.0 | ISSN 2796-9444

54

https://revistas.uncu.edu.ar/ojs3/index.php/revicap

REXICAp

Revista Ingenieria y Ciencias Aplicadas
ISSN 2796-9444 / Num. 2. Vol. 5 - 2025
https:/revistas.uncu.edu.ar/ojs3/index.php/revicap

Figura 8). La maquina de estados es sincrdnica.
Utiliza un reloj maestro y un reinicio sincrono para
gestionar los cambios de estado. Py2HDL inserta
automaticamente un estado inactivo inicial, llamado
idle, en el que la maquina permanece hasta que sea
activada por la sefial de inicio (véase la Figura 9).

21 begin

22

23

24 begin

25 if {clock'ewvent and clock = "1") then
26 if {currentState = assignd) then
27 temp <= b;

28 end if;

29 if (currentState = assign6) then
30 temp <= a;

L end if;

32 if ({currentState = return7) then
33 result <= temp;

34 end if;

35 end if;

36 end process:;

37

Figura 8. Cédigo VHDL de destino generado por Py2HDL
para el comparador (ruta de datos).

38 -- state register

39 process (clock, reset)

40 begin

41 if ({reset = "1") then

42 currentitate <= idle;

43 elsif (clock'event and clock = "1') then
44 currentitate <= nextState;

45 end if;

48 end process;

47

Figura 9. Cddigo VHDL de destino generado por Py2HDL
para el comparador (registro de estado).

La evolucion de la maquina de estados depende del
calculo del siguiente estado (véase la Figura 10). Para
ello se tienen en la cuenta en la lista de sensibilidad
todas las sefales capaces de generar eventos. Se
puede insertar un estado de finalizacidn adicional si
el disefiador desea que la maquina permanezca en
este estado, para efectos de probar el
comportamiento del hardware. El enfoque estandar
es dejar que la maquina vuelva al estado inactivo
para que esté disponible inmediatamente para un
nuevo célculo.

Cuando el valor a devolver es estable, el médulo
informa a su entorno dicho evento para que otros
modulos actien de conformidad. Esto se hace
activando una seinal de bandera, "ready", creada
automaticamente por Py2HDL (ver Figura 11).

4 -- next-state logic

49 process (currentitate, sStart, temp)
50 begin

il case currentState is

52 when idle =>

53 if (start = '1') then

54 next3tate <= a3signd;
35 elase

56 next3tate <= idle;

57 end if;

58 when assignd =>

o5 next3tate <= if5;

a0 when assigné =»

61 nextState <= return?;
a2 when return7 =>

63 nextState <= finish;
64 when if5 =>

65 if {(a » bB) then

[nextitate <= as3igné;
a7 else

68 nextState <= return?;
69 end if;

70 when finish =>

71 nextState <= finish;

72 end case;

73 end process;

T4

Figura 10. Cddigo VHDL de destino generado por Py2HDL
para el comparador (ldgica del estado siguiente).

= finish) else '0';

Figura 11. Cédigo VHDL de destino generado por Py2HDL
para el comparador (ldgica de salida).

Simulaciéon comportamental

Previo a implementar el disefio en hardware,
conviene realizar una simulacion del mismo. A
diferencia de una solucion software, en donde una
simulacion funcional en suficiente, una solucién
hardware requiere una simulacién comportamental,
en la cual se evalie que el disefio no sdlo realice la
funcién asignada, sino también que la haga en los
tiempos tanto absolutos como relativos necesarios.
Un simulador muy apreciado para VHDL es
ModelSim, el cual, aunque pasa por algunos cambios
al haber sido adquirido por una nueva empresa,
continda siendo un referente en el mundo VHDL. El
simulador requiere disponer de dos archivos: El
primer archivo es el archivo de descripcién y el
segundo es un banco de pruebas o testbench que
instruye al simulador con respecto a los valores que
debe asignar a cada sefial de entraday a los tiempos
en que debe hacerlo. Para una comprension mas
detallada del proceso de simulacién ver (Parra-Plaza,
2021).

REVISTA INGENIERIA Y CIENCIAS APLICADAS | CC BY-NC-SA 4.0 | ISSN 2796-9444

55

https://revistas.uncu.edu.ar/ojs3/index.php/revicap

7RicAp

Revista Ingenieria y Ciencias Aplicadas
ISSN 2796-9444 / Num. 2. Vol. 5 - 2025
https:/revistas.uncu.edu.ar/ojs3/index.php/revicap

Py2HDL genera un archivo TB que contiene el banco
de pruebas para un disefio dado. El contenido de
este archivo se genera a partir de las instrucciones
Python que detecte por fuera de funciones, en
particular llamados a las funciones e instrucciones
print. El archivo compTB.vhd incluye las pruebas de
alto nivel realizadas en la funcidn comp. Crea sefiales
para todos los puertos en comp.vhd, junto con

constantes y sefiales que simulan valores y variables
para las pruebas de alto nivel. Por ejemplo, probar x
= comp(5, 4) requiere la creacidn de la sefal x y de
las constantes 5 y 4. Py2HDL ordena las constantes
incrementalmente para facilitar su inspeccion.
También afiade valores para el periodo de la seiial de
reloj y asigna todas las sefiales a una instancia de la
funcién (ver Figura 12).

1 library ieee:

2use ieese.std logic 1164.211;
3use ieee.numeric_std.all;

4

Sentity compIB is
6end compTB;

& architecture th_arch of complB i=s

10 constant N : integer := 4;

11 signal TE start : std logic;

12 signal TB_clock : std logic;

13 signal TB_reaet : std logic:

14 signal TB_a : signed(N-1 downto 0);

15 signal TB_b : signed(N-1 downtc 0):

16 signal TB result : signed(N-1 downto 0);
17 signal TB_ready : std logic;

19 constant S5 : signed(N-1 downto 0) :
20 signal x : signed(N-1 downtoc 0);

begin

ntity work.comp{arch)
generic map (N=>N)

2
3
4 uut
5
{7

9 constant T @ time := 20 n3; -- ¢lk period = 50 MHz

18 constant 54 : signed(N-1 downto 0) := to_signed(4, Nj»
= to_signed (5, W):

port map({start=»IB_start, clock=>IB clock, reset=>IB_reset, a=>IB_a, b=>TB b, result=»TB_result, ready=>IB_ready):

Py2HDL genera una sefial de reloj similar a la del
hardware real y activa la sefial de reset durante el
primer periodo de reloj para un inicio predictivo
limpio (ver Figura 13). Las pruebas siguen una
secuencia de asignaciones que se asimilan a las
pruebas de alto nivel: se dan valores a los
argumentos, se genera la sefial de inicio y se permite
gue se estabilice, se pasa el control al mdédulo y se
programa el evento de retorno detectando el valor
de la sefial listo, el resultado se asigna a la seial de
pruebay se deja estable durante varios ciclos de reloj
para que esté dispone a otros mddulos (ver Figura
14).

28 -- clock generatior
29 process

30 kegin

3l TB clock <= "1';
2 wait for T/2;

33 TE clock <= '0';
34 wait for TI/2:

35 end process;

36

37 -- reset

38 IE reset <= '1', '0" after TI;
39

Figura 13. Cddigo VHDL de banco de pruebas generado
por Py2HDL para el comparador (reloj y reset).

Figura 14. Resultado de la simulacién para el comprador.

Sintesis hardware

Disponer sélo del archivo vhd que describa la
funcionalidad del disefio no es suficiente para su
implementacién final. Para ello, la herramienta de
desarrollo debe realizar un proceso denominado
sintesis, el cual consiste en asignar recursos o
bloques légicos de la FPGA a cada constructo que
logre identificar en la descripcion dada en VHDL
(Rushton, 2011). Para poder hacer eso es
indispensable que la herramienta conozca cual es la
tarjeta de desarrollo sobre la cual se hard la
implementacién, de tal manera que pueda asociar
los diferentes periféricos de entrada y de salida con
las sefiales internas correspondientes. Para una
comprension mas detallada del proceso de sintesis
ver (Parra-Plaza, 2022).

REVISTA INGENIERIA Y CIENCIAS APLICADAS | CC BY-NC-SA 4.0 | ISSN 2796-9444

56

https://revistas.uncu.edu.ar/ojs3/index.php/revicap

7RicAp

Revista Ingenieria y Ciencias Aplicadas
ISSN 2796-9444 / Num. 2. Vol. 5 - 2025
https:/revistas.uncu.edu.ar/ojs3/index.php/revicap

Py2HDL presta su ayuda en la sintesis durante dos
momentos clave. Primero, selecciona sdélo las
construcciones VHDL que tengan sentido en
hardware. VHDL tiene multiples propésitos, algunos
de los cuales tienen mas relacién con procesos de
simulacion y de documentacién que con
implementacion en hardware. Py2HDL elige un
subconjunto de VHDL, denominado VHDL
sintetizable, para que la herramienta de sintesis
realice apropiadamente su trabajo. Segundo, crea un
archivo de tipo XHC. Este archivo instruye a la
herramienta de sintesis para que realice un mapeado
entre los recursos externos a la FPGA vy las sefiales
internas de la misma.

Para el presente proyecto, la tarjeta de desarrollo
empleada es una Nexys4, ampliamente utilizada en
la academia por sus buenas prestaciones y bajo
costo. El archivo comp.xhc es la asignacion fisica para
el caso del comparador. Py2HDL determina qué
sefiales deben proporcionarse para uso externo y
calcula la cantidad de bits disponibles para cada una
en funcion del hardware de destino. Py2HDL asigna
la sefal de reloj al oscilador de cristal presente en la
placa y le indica que genere una sefial simétrica.
También asigna las sefiales de reinicio (reset) e inicio
(start) alos pulsadores, la sefial de listo (ready) al LED
mas alto y la sefial de resultado (result) al LED mas
bajo requerido (ver Figura 15).

) E3 [get_ports clock]
3 set_property TOSTANDARD LVCMOS33 [get ports clock]
4create clock -add -name sys_clk_pin -period 10.00 -waveform {0 5) [get_ports clock]

0 [get_ports reset]
TANDARD LVCMOS33 [get ports resec]

2 set_property

F15 [get_ports start]
T2 VCMOS33 [get_ports start]

10 set_property
11se
! 12 #
13 set |
14 set_property
15
16 # 0] to
1) 7 8 [get_ports {result[0]}]
3 TANDERD LVCMOS33 [get_ports [result[0]}]

. ports ready]
TANDERD LVCMOS33 [get _ports ready]

ts {result[1]}]
40533 [get ports [result[1]}]

1 set_property

RE [get ports {result[2]}]

3 set_property
4 3 VCMOS33 [get_ports [result([2]}]

b

o

set) [get_ports {result[3]}]
set_property TOSTANDARD LVCMOS33 [get ports [result[3]}]

MM MR NN N e

5

Figura 15. Cddigo XHC de asignacion fisica generado por
PyHDL para el comparador (sefiales del sistema).

Con respecto a las sefiales de parametros, Py2HDL
calcula la cantidad de bits que cada una puede
contener en funcion de las variables Python de alto
nivel y de la cantidad de recursos disponibles en el
hardware. Para ello inicia con las sefiales de salida,
las cuales son mapeadas hacia el conjunto de LEDs,
teniendo en la cuenta ademas que, segun el tipo de
operaciones que detecte en el cddigo fuente,
asignara un ancho de bits igual o duplicado al de las

sefiales de entrada. Posteriormente realiza una labor
similar con las sefiales de entrada. Esto puede
conllevar a que se recalcule la cantidad de bits en las
salidas si detecta que la asignacion inicial impide una
asignacion completa de las entradas. La version
actual de Py2HDL privilegia los escenarios de
aprendizaje mas que su uso por disefiadores mas
experimentados, por lo cual el LED mas significativo
se ha empleado para seiializar la finalizacién en la
ejecucion del cédigo. Esto con miras a detectar
posibles bucles infinitos. Para el caso de la placa
Nexys4, la asignacion detallada de recursos
hardware se muestra en la Figura 16.

30 set_property U9 [get ports [a[0]}]

31 set_property IOSTRANDARD LVCMOS33 [get_ports {a[0]}]
32 # 1 g at 1>

33 set_property LOC UE [get ports [a[l]}]

34 set_property STANDRRD LVCMOS33 [get ports [a[l]}]

35 # Mar g a t 2

R7 [get_ports [a[2]}]
STANDERD LVCMOS33 [get ports {a[2]}]

36 set_property
37 set property
38 # 1 g at >
39 set_property LOC Ré [get_ports [a[3]}]
40 set_property IOSTANDARD LVCMOS33 [get_ports {a[3]}]
41 # 1 ing b t =5

42 set_property
43 set_property
44 # Mapping b t
45 set_property
45 set rty
47 # 1
48 set_property
49 set_property

50 # Mz

RS [get_ports [b[0O]}]
STANDRARD LVCMOS33 [get_ports {b[0]}]
C VT [get ports [b[l]}]
STANDARD LVCMOS33 [get_perts {b[1]}]

V& [get_ports [b[2]}]
STANDERD LVCMOS33 [get_ports [b[2]]]

51 set_property V5 [get_ports [b[3]}]

52 set property IOSTANDRRD LVCMOS33 [get ports [b[3]}]

53

Figura 16. Cddigo XHC de asignacidn fisica generado por
PyHDL para el comparador (sefiales del disefiador).

Una vez la herramienta sintetiza el disefo, crea un
archivo en cddigo objeto de configuracién que puede
ser descargado a la placa de hardware. Al momento
en que esta descarga finaliza, la configuracién ya
permanece en la tarjeta hardware indefinidamente
hasta que sea remplazada por alguna nueva
configuracién. En estas condiciones, la tarjeta ya
actlia como un sistema independiente, y la ejecucion
del disefio ya es posible. La Figura 17 muestra el
resultado tras pulsar la sefal de inicio cuando los
argumentos proporcionados son los valores 5y 2
(binarios 0101 y 0010).

Como segunda prueba, se cambiaron los valores a 5
y 7 (binarios 0101 y 0111). El patron de los LEDs
muestra el cambio en el resultado. EI LED mds alto
indica que el resultado es estable y que estd
disponible para su uso seguro (véase la Figura 18).
Para mayor comodidad al momento de evaluar un
disefio determinado, Py2HDL le permite al disefiador
generar una secuencia de pruebas en lote. Si en el
codigo fuente se detecta la presencia de varias

REVISTA INGENIERIA Y CIENCIAS APLICADAS | CC BY-NC-SA 4.0 | ISSN 2796-9444

57

https://revistas.uncu.edu.ar/ojs3/index.php/revicap

REXICAp

Revista Ingenieria y Ciencias Aplicadas
ISSN 2796-9444 / Num. 2. Vol. 5 - 2025
https://revistas.uncu.edu.ar/ojs3/index.php/revicap

instrucciones print, Py2HDL generara
automaticamente un bloque contador que actuara
como un pequefio temporizador de tal manera que,
una vez el resultado de la primera prueba esté
disponible, se le dé tiempo al disefiador de
inspeccionarlo visualmente y corroborar si es
correcto o no y determinar si procede continuar las
pruebas o regresar al proceso de disefio. En la
version actual de Py2HDL este valor de temporizado
se fij6 en 2 segundos, lo cual es suficiente para
comprobar la mayoria de resultados en un primer
vistazo.

Figura 17. Ejecucidn de hardware para la prueba del
comparador (argumentos: a=5, b=2).

Figura 18. Ejecucién de hardware para la prueba del
comparador (argumentos: a=5, b=7).

Varias otras pruebas fueron realizadas con disefios
de mediana y alta complejidad. Estos incluyen
comparadores de tres y mas valores, divisor,
calculador de raiz cuadrada, detector de clave de
acceso y una version del juego de picas y famas
(Parra-Plaza, 2013). Las limitaciones estan dadas por
la propia naturaleza del dispositivo. Por ejemplo, las
operaciones matematicas actlan sobre operadores
enteros y la cantidad de entradas y de salidas
depende de las que puedan alojarse en el conjunto
de pulsadores, interruptores y LEDs de que disponga
la tarjeta. Mas que verlos como limitantes, es un
reconocimiento del tipo de aplicaciones para las
cuales una FPGA es conveniente. Para soluciones
que requieran calculos en punto flotante, un
microprocesador seria una mejor eleccién; y para

soluciones que involucren también sefales
analégicas, un buen candidato podria ser un
dispositivo del tipo PSoC (Van Ess, 2014).

La Figura 19 ilustra el resultado al ejecutar el cédigo
que extrae la raiz cuadrada de una variable num,
para el caso en que num tiene un valor de 82 (binario
1010010), el cual se puede observar en la disposicidn
de los interruptores. Al finalizar la ejecucidn,
indicada por la activacién del LED mas significativo,
el resultado se observa en los cuatro LEDs menos
significativos, que contienen el valor binario 1001,
correspondiente al valor decimal 9, el cual es la raiz
entera mas cercana a la raiz cuadrada de 82.

Figura 19. Ejecucidn de hardware para la prueba de raiz
cuadrada (argumento: num=82).

3. Resultados y Discusion

Es posible para determinar el impacto que el empleo
intencional de la herramienta de croscompilaciéon
podria tener en la mejor asimilacion del contenido
conceptual y en el desarrollo de habilidades de
diseio en hardware reconfigurable y asi
ulteriormente en el aprendizaje, se realizaron
diferentes pruebas a grupos de alumnos. En todos
los casos, cada alumno interactué con Py2HDL en
diversas circunstancias, obedeciendo a los estilos de
aprendizaje de Kolb (2017). En particular, el modelo
de Kolb describe cuatro estilos de aprendizaje,
denominados Divergente, Asimilador, Convergente y
Acomodador, los cuales a su vez derivan de un Ciclo
de Aprendizaje Experiencial, cuyas etapas son la
Experiencia Concreta, la Observacion Reflexiva, la
Conceptualizacion Abstracta y la Experimentacion
Activa. Para el caso del presente proyecto, se hizo
énfasis en el uso de la herramienta para las dos
primeras etapas.

En esencia, Kolb adhiere al concepto constructivista
(Doyle y Zakrajsek, 2013) en cuanto a que el
aprendizaje deviene en una construccién, en esencia
en la formacién de redes neuronales especificas en
el cerebro del aprendiz, para soportar la

REVISTA INGENIERIA Y CIENCIAS APLICADAS | CC BY-NC-SA 4.0 | ISSN 2796-9444

58

https://revistas.uncu.edu.ar/ojs3/index.php/revicap

REXICAp

Revista Ingenieria y Ciencias Aplicadas
ISSN 2796-9444 / Num. 2. Vol. 5 - 2025
https:/revistas.uncu.edu.ar/ojs3/index.php/revicap

comprension y elaboracién del concepto o habilidad
que se esta aprendiendo. Como tal, el
constructivismo privilegia una primera aproximacion
practica al objeto de estudio, antes que un discurso
conceptual, en contravia con muchas tendencias
largamente usadas en el sector educativo. Fieles a
ese concepto, en esta investigacion se ofrece al
estudiante una aproximacion al disefio en hardware
reconfigurable partiendo de una aplicacion que le
permite experimentar de primera mano el disefio
hardware en VHDL (objetivo), partiendo de un
conocimiento ya adquirido como es el lenguaje
Python (punto de partida). De esta manera, se busca
despertar las asociaciones pertinentes que
favorezcan unainsercion mas natural a los conceptos
mas abstractos del hardware, siguiendo los
postulados de una de las vertientes mas conocidas
del constructivismo, el aprendizaje significativo
(Ausubel et al, 1978).

Las actividades se desarrollaron simultdneamente
por los alumnos, para lo cual se establecieron tres
grupos, cada uno de 25 alumnos: A) grupo control:
alumnos que no usaron Py2HDL, B) alumnos que
usaron Py2HDL en su versidn estandar, C) alumnos
que usaron Py2HDL en su versién minimalista. Esta
es una versién que deliberamente oculta al alumno
elementos de la plataforma que no sean pertinentes
para su momento. En primera instancia, la interfaz
que se ofrece es absolutamente elemental, al estilo
del conocido buscador Google, una pantalla en
donde solo hay una casilla para escribir cédigo
Python y un botdn de ejecucidn, distinto a la versién
estandar de la herramienta que es mas afin a un IDE
(entorno de desarrollo) convencional.

<Aprendizaje>

A | ma
| L]
1 [

Interés Motivacion Asimilacién

M OB oD @
o o 0 o O

Dimensiones

Figura 20. Métricas de aprendizaje para los primeros
grupos considerados.

La Figura 20 muestra los resultados de las medidas
de aprendizaje realizadas, los valores son el
promedio por cada grupo y estan dados en
porcentajes, donde el 100% es el valor perfecto de la
categoria. Se tomaron tres aspectos: interés,
motivacion y asimilacién (Parra-Plaza, 2017). El
interés se midid como el tiempo promedio que
permanecia el alumno en una sesién de trabajo, la
motivacion es el nimero de ejercicios que realizé de

los disponibles en la sesién y la asimilacién se
determiné como la cantidad de respuestas correctas
que obtuvo el alumno en una prueba de suficiencia
realizada un mes después de haber estudiado el
tema.

Se observa que el empleo de la herramienta como
vehiculo de interaccidn para desarrollar habilidades
de disefio genera mejorias con respecto al enfoque
convencional de dar la teoria y luego ir a sesiones de
laboratorio, contrastando los valores para los grupos
Ay B. A su vez, se observa como el empleo de la
interfaz minimalista evidenci6 mejorias ulteriores,
tal como indica los mayores valores del grupo C con
respecto al grupo B. La diferencia mds notable se da
en la asimilacién, en donde la menor distraccion y
stress que produce esta interfaz hace que Ia
retencidn y aplicacion ulterior de conocimientos mas
que se duplique con respecto a la forma
convencional de instruccion, incluso siendo ésta
mediada tecnoldgicamente.

Con miras a establecer en qué medida el uso de las
etapas en el modelo de Kolb puede beneficiar aun
mas el proceso, se incluyé un cuarto grupo (D). En
este grupo se realizd la etapa de Observacion
Reflexiva. Para ello, Py2HDL fue dotado de un
modulo adicional que se beneficia de una aplicaciéon
de inteligencia artificial para establecer un didlogo
con el aprendiz en cuanto a la experiencia vivida en
las sesiones con el entorno de disefio. De nuevo, este
didlogo se busco que fuera también enfocado a un
minimalismo, para lo cual la aplicacién IA se alimenté
con material adecuado para un didlogo simple pero
reflexivo al respecto (Parra-Plaza, 2019).

Con esta novedad se obtuvo la distribucién que se
indica en la Figura 21. Se observa que los resultados
para el grupo D superan a todos los otros grupos.
Este resultado sugiere que la mediacién tecnolégica
aunada a paradigmas o modelos de aprendizaje
coherentes con esta mediacidn son una alianza que
beneficia tanto los procesos mismos de ensefianza
como el desempefio a lograr por los alumnos.

<Aprendizaje>
90

80 [] .

70 [

60 [LI
2V "
30 A c
20 | 1 -O
10 |

o

Interés Motivacion Asimilacion

Dimensién

Figura 21. Métricas de aprendizaje para todos los grupos
considerados.

REVISTA INGENIERIA Y CIENCIAS APLICADAS | CC BY-NC-SA 4.0 | ISSN 2796-9444

59

https://revistas.uncu.edu.ar/ojs3/index.php/revicap

ﬂ?e\lCAp

Revista Ingenieria y Ciencias Aplicadas
ISSN 2796-9444 / Num. 2. Vol. 5 - 2025
https://revistas.uncu.edu.ar/ojs3/index.php/revicap

4. Conclusiones

Es posible mejorar el desarrollo de habilidades
cognitivas realizando una exposicidn incremental en
la complejidad de la informacidn y de los procesos a
comprender por parte de los estudiantes. De esta
manera, se da tiempo al cerebro de que construya
las redes neuronales correspondientes de acuerdo
con qué tan significativo sea uno u otro aspecto del
contenido presentadoy de las actividades realizadas.

La construccién de conocimiento que logre perdurar
en el tiempo puede facilitarse al mediar los procesos
educativos con soluciones tecnoldgicas creativas que
se basen en paradigmas pedagdgicos que tengan en
cuenta las actividades experienciales. En la medida
en que las actividades didacticas estén guiadas por
un fundamento neurobioldgico tanto del aprendizaje
como de la ensefianza, es posible, de manera
intencionada, influir positivamente en el proceso de
desarrollo de habilidades perdurables por parte de
los estudiantes.

El empleo de Py2HDL como herramienta de
intervencion en el proceso educativo manifesté
ofrecer resultados de mejora en las distintas
dimensiones del aprendizaje que se consideraron,
como son interés, motivacion y asimilacién, medidas
tanto inmediatamente como posteriormente en el
tiempo, indicando una demostracién en la practica
de los principios del constructivismo en general y del
aprendizaje significativo en particular.

La insercién del modelo de aprendizaje de Kolb, en
combinacién con herramientas tecnoldgicas que
faciliten su realizaciéon, se mostr6 como una
posibilidad que incrementa la construccién de
conocimiento, el desarrollo de habilidades y la
retencién ulterior de informacidn y conceptos clave
en una determinada disciplina.

La comprension de la concurrencia al emplear VHDL
para el desarrollo de sistemas digitales se propicia
mediante herramientas tecnoldgicas que permitan al
alumno observar un paralelismo en la ejecucion
entre dos sistemas: el que esta aprendiendo y otro
gue le sea mas familiar. La complejidad asociada con
el paralelismo intenso que subyace a todos los
procesos que ocurren en un sistema digital, aunada
a la complejidad comportamental cuando presenta
retroalimentacidn, es mas abordable si se dispone de
un referente que esté mas cercano a la cotidianidad
y a la representacion de esquemas y propuestas,
como es el caso de Python.

Disponer de herramientas de croscompilacién
permite establecer diferentes escenarios de
aprendizaje en donde el protagonismo del aprendiz
vaya gradualmente haciéndose mds importante al
pasar de conceptos basicos a intermedios vy
complejos. El uso intencional de herramientas de
tecnologia educativa permite modular la intensidad
y la transicién entre estas etapas.

5. Referencias

Amaranth Project (2023). Disponible en: amaranth-
lang.org/docs/amaranth/latest/guide.html

Ausubel, D. Novak, J. y Hanesian, H. (1978).
Educational Psychology: A Cognitive View.
Holt, Rinehart & Winston.

Based Learning Systems.

Black, D. C., Donovan, J., Bunton, B. y Keist, A. (2009).
SystemC: From the ground up. Springer.

Blokdyk, G. (2018). Hardware-Reconfigurable
Devices. 5STARCooks.

Doyle, T. y Zakrajsek, T. (2013). The New Science of
Learning: How to Learn in Harmony With
Your Brain. Stylus Publishing.

Jasinski, R. (2016). Effective Coding with VHDL:
Principles and Best Practice. MIT Press.

Kleitz, W. (2011). Digital Electronics: A Practical
Approach with VHDL. Pearson.

Kolb, A. Y. y Kolb, D. A. (2017). The Experiential
Educator: Principles and Practices of
Experiential Learning. Experience

Nicolescu, G. y Mosterman, P. J. (2018). Model-
Based Design for Embedded Systems. CRC
Press.

O’Regan, G. A. (2021). Brief History of Computing.
Springer.

Parra-Plaza, J. A. (2012). Concurrent programming:
towards an optimal computation. EIISI.

Parra-Plaza, J. A.(2013). VHDL implementation of the
Cows and Bulls game. Technical report. Cali
(Colombia). Pontificia Universidad
Javeriana.

Parra-Plaza, J. A. (2015). High-level Synthesis
Through a Cross-compiler from Pure Python
to Hardware Description Languages. WCAS.

Parra-Plaza, J. A. (2016). Custom processors design
using Python-based high level synthesis.
Instituto Antioquefio de Investigacion.

Parra-Plaza, J. A. (2018). Computacion adaptativa
para mediar tecnolégicamente en la
ensefianza para el aprendizaje. Instituto
Antioquefio de Investigacion.

Parra-Plaza, J. A. (2019). Citoaprendizagem:
Computacdo bioinspirada adaptativa
focada na aprendizagem significativa. CISCI.

REVISTA INGENIERIA Y CIENCIAS APLICADAS | CC BY-NC-SA 4.0 | ISSN 2796-9444

60

https://revistas.uncu.edu.ar/ojs3/index.php/revicap

Revista Ingenieria y Ciencias Aplicadas
ISSN 2796-9444 / Num. 2. Vol. 5 - 2025
Re ICAp https://revistas.uncu.edu.ar/ojs3/index.php/revicap

Parra-Plaza, J. A. (2020). Introducciéon a VHDL.

Disponible en:
www.youtube.com/watch?v=ZCX20VK5Gm
E

Parra-Plaza, J. A. (2021). Simulacién VHDL con
ModelSim. Disponible en:
www.youtube.com/watch?v=KTISNd4NCW
o

Parra-Plaza, J. A. (2022). Sintesis VHDL con Vivado.
Disponible en:
www.youtube.com/watch?v=Q2MCcWfLN
hM

Parra-Plaza, J. A. (2023). PyHDL: Cross-compiler from
pure Python to Hardware Description
Languages. Technical Report. Institucion
Universitaria Antonio José Camacho.

Parra-Plaza, J.A. (2017). Propiciando el aprendizaje
significativo en entornos interactivos
mediante la insercion de moduladores
neurogenéticos. Compdes.

Pedroni, V. A. (2020). Circuit Design with VHDL. MIT
Press.

Rushton, A. (2011). VHDL for Logic Synthesis. Wiley.

Van Ess, D. (2014). Learn Digital Design with PSoC, a
bit at a time. Pearson.

Zalar, P., Gostincar, C., de Hoog, G. S., Ursic, V.,
Sudhadham, M., & Gunde-Cimerman, N.
(2008). Redefinition of Aureobasidium
pullulans and its varieties. Studies in
Mycology, 61, 21-38.
https://doi.org/10.3114/sim.2008.61.02

REVISTA INGENIERIA Y CIENCIAS APLICADAS | CC BY-NC-SA 4.0 | ISSN 2796-9444
61

https://revistas.uncu.edu.ar/ojs3/index.php/revicap

